
CSE 143 Sample Final Exam #2 

1. Inheritance and Polymorphism. 
Consider the following classes 
(System.out.println has been 
abbreviated as S.o.pln): 

 
public class Bay extends Lake { 
    public void method1() { 
        S.o.pln("Bay 1"); 
        super.method2(); 
    } 
 
    public void method2() { 
        S.o.pln("Bay 2"); 
    } 
} 
 
public class Pond { 
    public void method2() { 
        S.o.pln("Pond 2"); 
    } 
} 
 
public class Ocean extends Bay { 
    public void method2() { 
        S.o.pln("Ocean 2"); 
    } 
} 
 
public class Lake extends Pond { 
    public void method3() { 
        S.o.pln("Lake 3"); 
        method2(); 
    } 
} 

 

The following variables are defined: 
Lake var1 = new Ocean(); 
Pond var2 = new Pond(); 
Pond var3 = new Lake(); 
Object var4 = new Bay(); 
Lake var5 = new Bay(); 
Bay var6 = new Ocean(); 

In the table below, indicate in the right-hand column the output 
produced by the statement in the left-hand column.  If the 
statement produces more than one line of output, indicate the 
line breaks with slashes as in "a / b / c" to indicate three lines of 
output with "a" followed by "b" followed by "c".  If the 
statement causes an error, fill in the right-hand column with the 
phrase "error" to indicate this. 

Statement 

var1.method2(); 

var2.method2(); 

var3.method2(); 

var4.method2(); 

var5.method2(); 

var6.method2(); 

var1.method3(); 

var2.method3(); 

var3.method3(); 

var4.method3(); 

var5.method3(); 

var6.method3(); 

((Ocean) var5).method1(); 

((Lake) var3).method3(); 

((Lake) var4).method1(); 

((Ocean) var1).method1(); 

((Bay) var4).method1(); 

((Lake) var2).method3(); 

((Ocean) var5).method1(); 

((Pond) var4).method2(); 

Output 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________  



2. Inheritance and Comparable Programming.  You have been asked to extend a pre-existing class Date 
that represents calendar dates such as March 19.  The Date class includes these constructors and methods: 

Constructor/Method Description 
public Date(int month, int day) constructs a Date object with the given month/day 
public int getMonth() returns the month 
public int getDay() returns the day 
public void setMonth(int month) sets month to a new value 
public void setDay(int day) sets day to a new value 
public int daysInMonth(int month) returns number of days in the given month 

(examples:  4 → 30;    10 → 31;    2 → 28) 
public void nextDay() advances to next date, wrapping month if needed 

(3/19 → 3/20;    1/31 → 2/1;    12/31 → 1/1) 
public String toString() returns string version of date, such as "03/19" 

You are to define a new class called CalendarDate that extends this class through inheritance.  It 
should behave like a Date except that it should also keep track of the year.  You should provide the same 
methods as the superclass, as well as the following new behavior: 

Constructor/Method Description 
public CalendarDate(int year, 
    int month, int day) 

constructs a CalendarDate object with the given 
year/month/day 

public int getYear() returns the year 
public void setYear(int year) sets year to a new value 

Some of the existing behaviors from Date should behave differently on CalendarDate objects: 

• When a CalendarDate is printed with toString, it should be returned in a year/month/day 
format such as "2009/03/19".  Note that the year comes first.  There should be a leading 0 if 
necessary if the month and/or day is less a single-digit number. 

• When advancing a CalendarDate object to the next date using nextDay, if this is the last date of 
the year (December 31st), you should wrap the object to the next year.  For example, the next day 
after December 31st, 2009 is January 1st, 2010. 

You must also make CalendarDate objects comparable to each other using the Comparable 
interface.  Calendar dates are compared by year, then by month, then by day.  In other words, a 
CalendarDate object with a smaller year is considered to be "less than" one with a larger year.  If two 
objects have the same year, the one with the lower month is considered "less."  If they have the same year 
and month, the one with the lower day is considered "less."  If the two objects have the same year, month, 
and day, they are considered to be "equal." 

You may assume that all year/month/day values passed to your methods and constructors are valid.  You 
should not worry about leap years for this problem; assume that February always has 28 days. 



3. Linked List Programming.  Write a method removeAll that could be added to the LinkedIntList 
class from lecture and section.  The method should efficiently remove from a sorted list of integers all 
values appearing in a second sorted list of integers.  For example, suppose LinkedIntList variables 
list1 and list2 refer to the following lists: 

list1: [1, 3, 5, 7] 
list2: [1, 2, 3, 4, 5] 

If the call list1.removeAll(list2); is made, the lists should store the following values after the call: 
list1:  [7] 
list2:  [1, 2, 3, 4, 5] 

Notice that all of the values from list1 that appear in list2 have been removed and list2 is unchanged.  
If the call instead had been list2.removeAll(list1); , the lists would have these values afterwards: 

list1:  [1, 3, 5, 7] 
list2:  [2, 4] 

Both lists are guaranteed to be in sorted (non-decreasing) order, although there might be duplicates in either 
list.  Because the lists are sorted, you can solve this problem very efficiently with a single pass through the 
data.  Your solution is required to run in O(M + N) time where M and N are the lengths of the two lists. 

Recall the LinkedIntList and ListNode classes seen in lecture and section: 
public class LinkedIntList { 
    private ListNode front; 
 
    methods 
} 
 
public class ListNode { 
    public int data;       // data stored in this node 
    public ListNode next;  // link to next node in the list 
    ... 
} 

You may not call any methods of your linked list class to solve this problem, you may not construct any 
new nodes, and you may not use any auxiliary data structure to solve this problem (such as an array, 
ArrayList, Queue, String, etc).  You also may not change any data fields of the nodes.  You must 
solve this problem by rearranging the links of the list. 



4. Searching and Sorting. 

(a) Suppose we are performing a binary search on a sorted array called numbers initialized as follows: 
// index          0   1   2   3   4   5   6   7   8   9  10  11  12  13  14 
int[] numbers = {-1,  0,  5, 11, 18, 29, 53, 57, 61, 64, 78, 82, 85, 89, 93}; 
 
// search for the value 86 
int index = binarySearch(numbers, 86); 

Write the indexes of the elements that would be examined by the binary search (the mid values in our 
algorithm's code) and write the value that would be returned from the search.  Assume that we are using the 
binary search algorithm shown in lecture and section. 

• Indexes examined: ___________________________________________________________ 

• Value Returned: __________________________ 

 

(b) Write the state of the elements of the array below after each of the first 3 passes of the outermost loop of 
the selection sort algorithm. 
int[] numbers = {8, 5, -9, 14, 0, -1, -7, 3}; 
selectionSort(numbers); 

 

 

 

 

(c) Trace the complete execution of the merge sort algorithm when called on the array below, similarly to 
the example trace of merge sort shown in the lecture slides.  Show the sub-arrays that are created by the 
algorithm and show the merging of sub-arrays into larger sorted arrays. 
int[] numbers = {8, 5, -9, 14, 0, -1, -7, 3}; 
mergeSort(numbers); 

 



5. Binary Search Trees.   

(a) Write the binary search tree that would result if these elements were added to an empty tree in this order: 

• Lisa, Bart, Marge, Homer, Maggie, Flanders, Smithers, Milhouse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Write the elements of your tree above in the order they would be visited by each kind of traversal: 

• Pre-order: ____________________________________________________________________ 

• In-order: ____________________________________________________________________ 

• Post-order: ____________________________________________________________________ 



6. Binary Tree Programming.  Write a method countMultiples that could be added to the IntTree class 
from lecture and section.  The method returns a count of the number of multiples of a particular value in the 
binary tree.  Given a number n, a value m is considered a multiple of n if it can be expressed as (k * n) for 
some integer k.  For example, suppose that an IntTree variable t stores a reference to the following tree: 

t 
               +---+ 
               | 6 | 
               +---+ 
             /       \ 
           /           \ 
     +---+               +---+ 
     | 2 |               | 9 | 
     +---+               +---+ 
    /     \                   \ 
   /       \                   \ 
+---+     +---+               +---+ 
| 5 |     | 3 |               | 4 | 
+---+     +---+               +---+ 
         /     \              /    \ 
        /       \            /      \ 
    +---+     +---+      +---+     +---+ 
    | 8 |     | 6 |      | 7 |     | 0 | 
    +---+     +---+      +---+     +---+ 

The table below shows various calls and the values they should return: 
Call Value Returned Reason 

t.countMultiples(2) 6 six multiples of 2: 6, 2, 4, 8, 6, 0 
t.countMultiples(4) 3 three multiples of 4: 4, 8, 0 
t.countMultiples(3) 5 five multiples of 3: 6, 9, 3, 6, 0 
t.countMultiples(1) 10 all ten numbers are multiples of 1 

Your method should throw an IllegalArgumentException if passed the value 0.  You may define 
private helper methods to solve this problem, but otherwise you may not call any other methods of the 
IntTree class nor create any data structures such as arrays, lists, etc.  Your method should not change the 
structure or contents of either of the two trees being compared. 

Recall the IntTree and IntTreeNode classes as shown in lecture and section: 
public class IntTreeNode { 
    public int data;          // data stored in this node 
    public IntTreeNode left;  // reference to left subtree 
    public IntTreeNode right; // reference to right subtree 
 
    public IntTreeNode(int data) { ... } 
    public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...} 
} 
 
public class IntTree { 
    private IntTreeNode overallRoot; 
 
    methods 
} 



7. Binary Tree Programming.  Write a method matches that could be added to the IntTree class from 
lecture and section.  The method returns a count of the number of nodes in one tree that match nodes in 
another tree.  A match is defined as a pair of nodes that are in the same position in the two trees relative to 
their overall root and that store the same data. 

For example, suppose IntTree variables t1 and t2 refer to the following trees (matches underlined): 
t1 t2 

            +---+ 
            | 3 | 
            +---+ 
           /     \ 
          /       \ 
      +---+       +---+ 
      | 4 |       | 7 | 
      +---+       +---+ 
     /     \           \ 
    /       \           \ 
+---+       +---+      +---+ 
| 0 |       | 9 |      | 2 | 
+---+       +---+      +---+ 
                 \ 
                  \ 
                  +---+ 
                  | 8 | 
                  +---+ 

            +---+ 
            | 3 | 
            +---+ 
           /     \ 
          /       \ 
      +---+       +---+ 
      | 6 |       | 7 | 
      +---+       +---+ 
     /           /     \ 
    /           /       \ 
+---+        +---+     +---+ 
| 0 |        | 9 |     | 2 | 
+---+        +---+     +---+ 
     \ 
      \ 
      +---+ 
      | 8 | 
      +---+ 

The calls of t1.matches(t2) and t2.matches(t1) would each return 4.  The overall root of the two 
trees match (both are 3).  The nodes at the top of the left subtrees of the overall root do not match (one is 4 
and one is 6).  The top of the right subtrees of the overall root match (both are 7).  The next level of the tree 
has 2 matches for the nodes storing 0 and 2 (there are two nodes that each store 9 at this level, but they are 
in different positions relative to the overall root of the tree).  The nodes at the lowest level both store 8, but 
they aren't a match because they are in different positions. 

You may define private helper methods to solve this problem, but otherwise you may not call any other 
methods of the IntTree class nor create any data structures such as arrays, lists, etc.  Your method should 
not change the structure or contents of either of the two original trees being examined. 

 


