
CSE 143 Sample Final Exam #3 

1.   Inheritance and Polymorphism. 

Consider the following classes 
(System.out.println has been 
abbreviated as S.o.pln): 
 
public class Leo extends Don { 
    public void method1() { 
        S.o.pln("Leo 1"); 
    } 
     
    public void method3() { 
        S.o.pln("Leo 3"); 
        method1(); 
    } 
} 
 
public class Mike extends Leo { 
    public void method2() { 
        S.o.pln("Mike 2"); 
        super.method2(); 
    } 
} 
 
public class Raph { 
    public void method1() { 
        S.o.pln("Raph 1"); 
    } 
} 
 
public class Don extends Raph { 
    public void method2() { 
        method1(); 
        S.o.pln("Don 2"); 
    } 
} 

 
 
The following variables are defined: 
Raph var1   = new Don(); 
Leo var2    = new Mike(); 
Object var3 = new Raph(); 
Don var4    = new Leo(); 

In the table below, indicate in the right-hand column the output 
produced by the statement in the left-hand column.  If the statement 
produces more than one line of output, indicate the line breaks with 
slashes as in "a / b / c" to indicate three lines of output with "a" 
followed by "b" followed by "c".  If the statement causes an error, 
fill in the right-hand column with the phrase "error" to indicate this. 

Statement 

var1.method1(); 

var1.method2(); 

var1.method3(); 

var2.method1(); 

var2.method2(); 

var2.method3(); 

var3.method1(); 

var4.method1(); 

var4.method2(); 

var4.method3(); 

((Don) var1).method2(); 

((Mike) var2).method2(); 

((Raph) var3).method1(); 

((Don) var3).method2(); 

((Leo) var4).method3(); 

Output 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

________________________  

 



2. Inheritance and Comparable Programming. 
You have been asked to extend a pre-existing class Person that represents a person used as part of an 
online dating/marriage system.  The Person class includes the following constructors and methods: 

Constructor/Method Description 
public Person(String name) constructs a person with the given name 
public String getName() returns the person's name 
public void engageTo(Person partner) sets the person to be engaged to the given partner 
public Person getFiancee() returns the person's fiancée, or null if none 
public boolean isSingle() returns true if the person has no fiancée 
public Queue<String> getPreferences() returns a queue of preferred partners 
public Map<String, Integer> getRankings() returns a map of rankings 
public String toString() returns a string representation of the person 

You are to define a new class called Playa that extends this class through inheritance.  A Playa should 
behave like a Person except that it makes mischief by allowing itself to be engaged to multiple persons at 
the same time, keeping track of a collection of all such fiancées.  You should provide the same methods as 
the superclass, as well as the following new behavior. 

Constructor/Method Description 
public Playa(String name) constructs a playa with the given name 
public int countFiancees() returns the number of fiancées to which this playa 

is currently engaged 

The behaviors related to preferences and rankings of potential partners are unaffected by this subclass. 

Some of the existing behaviors from Person should behave differently on Playa objects: 

• When the engageTo method is called, the Playa should still retain the existing engageTo 
behavior (because it maintains important internal state), but it should also keep track of a collection 
of all engagement partners seen so far.  Each partner passed to engageTo should become part of this 
collection.  It should not be possible for the same person to appear twice in this collection.  If null 
is passed to engageTo, your Playa should instead clear its collection of partners to become single 
again.  (A Playa can become engaged to any person(s), not just other Playas.) 

• The getFiancee method should return the partner to which the Playa most recently became 
engaged (not counting null).  This will occur automatically if the original engageTo behavior 
from Person is retained. 

• The isSingle method should return true only if the Playa has no partners in its engagement 
collection. 

You must also make Playa objects comparable to each other using the Comparable interface.  Playas 
are compared by their number of fiancées, breaking ties by name.  In other words, a Playa object with 
fewer fiancées in its partner collection is considered to be "less than" one with more fiancées in its 
collection.  If two Playa objects have the same number of fiancées, the one whose name comes first in 
alphabetical order is considered "less."  If the two objects have the same number of fiancées and the same 
name, they are considered to be "equal." 

The majority of your grade comes from implementing the correct behavior.  Part of your grade also comes 
from appropriately utilizing the behavior you have inherited from the superclass and not re-implementing 
behavior that already works properly in the superclass. 



3. Linked List Programming. 
Write a method expand that could be added to the LinkedIntList class from lecture and section.  The 
method accepts an integer f as a parameter and replaces every value i with f copies of the value (i / f).  
Suppose a LinkedIntList variable list stores the following values: 

[21, 8, 15, 0, -3, 32] 

The call list.expand(3); would change the list to store the following elements: 
[7, 7, 7, 2, 2, 2, 5, 5, 5, 0, 0, 0, -1, -1, -1, 10, 10, 10] 

If an element of the original list is not evenly divisible by f, as with 8 and 32 above, the resulting list should 
truncate any fractional component (as is done naturally by integer division).  If the parameter value passed is 
1, the list is unchanged.  If it is 0 or negative, the list should become empty. 

For full credit, your solution must run in O(N) time where N is the length of the list.  You may not call any 
methods of the linked list class to solve this problem, and you may not use any auxiliary data structure to 
solve this problem (such as an array, ArrayList, Queue, String, etc). 

Assume that you are using the LinkedIntList and ListNode class as defined in lecture and section: 
public class LinkedIntList { 
    private ListNode front;  
    methods 
}  
public class ListNode { 
    public int data;       // data stored in this node 
    public ListNode next;  // a link to the next node in the list 

 
    public ListNode() { ... } 
    public ListNode(int data) { ... } 
    public ListNode(int data, ListNode next) { ... } 
} 

 



4. Searching and Sorting. 

(a) Suppose we are performing a binary search on a sorted array called numbers initialized as follows: 
// index          0   1   2   3   4   5   6   7   8   9  10  11  12  13 
int[] numbers = {-2,  0,  1,  7,  9, 16, 19, 28, 31, 40, 52, 68, 85, 99}; 
 
// search for the value 5 
int index = binarySearch(numbers, 5); 

Write the indexes of the elements that would be examined by the binary search (the mid values in our 
algorithm's code) and write the value that would be returned from the search.  Assume that we are using the 
binary search algorithm shown in lecture and section. 

• Indexes examined: ___________________________________________________________ 

• Value Returned: __________________________ 

 

(b) Write the state of the elements of the array below after each of the first 3 passes of the outermost loop of 
the selection sort algorithm. 
int[] numbers = {63, 9, 45, 72, 27, 18, 54, 36}; 
selectionSort(numbers); 

 

 

 

 

(c) Trace the complete execution of the merge sort algorithm when called on the array below, similarly to 
the example trace of merge sort shown in the lecture slides.  Show the sub-arrays that are created by the 
algorithm and show the merging of sub-arrays into larger sorted arrays. 
int[] numbers = {63, 9, 45, 72, 27, 18, 54, 36}; 
mergeSort(numbers); 

 



5. Binary Search Trees.   

(a) Write the binary search tree that would result if these elements were added to an empty tree in this order: 

• Meg, Stewie, Peter, Joe, Lois, Brian, Quagmire, Cleveland 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Write the elements of your tree above in the order they would be visited by each kind of traversal: 

• Pre-order: ____________________________________________________________________ 

• In-order: ____________________________________________________________________ 

• Post-order: ____________________________________________________________________ 



6. Binary Tree Programming. 
Write a method nodesAtLevels that could be added to the IntTree class from lecture and section.  The 
method accepts minimum and maximum integers as parameters and returns a count of how many elements 
exist in the tree at those levels, inclusive.  Recall that the root of a tree is at level 1, its children are at level 
2, their children at level 3, and so on.  The table below shows the results of several calls on an IntTree 
variable tree: 

Level tree Call Value Returned
tree.nodesAtLevels(2, 4) 8 

tree.nodesAtLevels(4, 5) 6 

tree.nodesAtLevels(1, 2) 3 

tree.nodesAtLevels(3, 3) 3 

tree.nodesAtLevels(7, 9) 0 

tree.nodesAtLevels(5, 9) 3 

 
1 
 
 
 
2 
 
 
 
3 
 
 
 
4 
 
 
 
5 

                         +----+ 
                         | 20 | 
                   _____ +----+ _____ 
                  /                  \ 
              +----+                   +----+ 
              | 76 |                   | 11 | 
        _____ +----+               ___ +----+ 
       /           \              / 
    +----+         +----+   +----+ 
    | 24 |         | 42 |   | 98 | 
    +----+         +----+   +----+ 
   /      \                      \ 
+----+   +----+                  +----+ 
| -8 |   | 80 |                  | -2 | 
+----+   +----+                  +----+ 
              \                  /    \ 
            +----+           +----+  +----+ 
            | 57 |           |  1 |  | 27 | 
            +----+           +----+  +----+ 

tree.nodesAtLevels(1, 1) 1 

For example, tree.nodesAtLevels(4, 5) returns 6 because -8, 80, -2, 57, 1, and 27 are in that range of 
levels. 

Your method should throw an IllegalArgumentException if the minimum passed is less than 1 or is 
greater than the maximum passed.  It is legal for the minimum and/or maximum to be larger than the height 
of the tree; a tree has 0 nodes at any levels that exceed its height.  An empty tree contains 0 nodes at any 
level. 

You may define private helper methods to solve this problem, but otherwise you may not call any other 
methods of the class nor create any data structures such as arrays, lists, etc.  Your method should not change 
the structure or contents of the tree being examined. 

Recall the IntTree and IntTreeNode classes as shown in lecture and section: 
public class IntTreeNode { 
    public int data;          // data stored in this node 
    public IntTreeNode left;  // reference to left subtree 
    public IntTreeNode right; // reference to right subtree 
 
    public IntTreeNode(int data) { ... } 
    public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...} 
} 
 
public class IntTree { 
    private IntTreeNode overallRoot; 
 
    methods 
} 



7. Binary Tree Programming. 
Write a method trim that could be added to the IntTree class from lecture and section.  The method 
accepts minimum/maximum integers as parameters and removes from the tree any elements that are not in 
that range, inclusive.  For this method, assume that your tree is a binary search tree (BST) and that its 
elements are in valid BST order.  Your method should maintain the BST ordering property of the tree.  For 
example, suppose a variable of type IntTree called tree stores the following elements: 

tree 
                         +----+ 
                         | 50 | 
                   _____ +----+ _____ 
                  /                  \ 
              +----+                   +----+ 
              | 38 |                   | 90 | 
        _____ +----+               ___ +----+ 
       /           \              / 
    +----+         +----+   +----+ 
    | 14 |         | 42 |   | 54 | 
    +----+         +----+   +----+ 
   /      \                      \ 
+----+   +----+                  +----+ 
|  8 |   | 20 |                  | 72 | 
+----+   +----+                  +----+ 
              \                  /    \ 
            +----+           +----+  +----+ 
            | 26 |           | 61 |  | 83 | 
            +----+           +----+  +----+ 

The table below shows what the state of the tree would be if various trim calls were made.  The calls 
shown are separate; it's not a chain of calls in a row.  You may assume that the minimum is less than or 
equal to the maximum. 

tree.trim(25, 72); tree.trim(54, 80); tree.trim(18, 42); tree.trim(-3, 6); 
            +----+ 
            | 50 | 
          _ +----+ 
         /        \ 
    +----+        +----+   
    | 38 |        | 54 |   
    +----+        +----+   
    /    \            \   
+----+  +----+       +----+ 
| 26 |  | 42 |       | 72 | 
+----+  +----+       +----+ 
                      /    
                   +----+ 
                   | 61 | 
                   +----+ 

+----+   
| 54 |   
+----+   
     \   
     +----+ 
     | 72 | 
     +----+ 
     /    
 +----+    
 | 61 |    
 +----+    

      +----+      
      | 38 |      
    _ +----+ 
   /         \      
+----+      +----+ 
| 20 |      | 42 | 
+----+      +----+ 
    \               
   +----+           
   | 26 |           
   +----+           

   

Hint: The BST ordering property is important for solving this problem.  If a node's data value is too large or 
too small to fit within the range, this may also tell you something about whether that node's left or right 
subtree elements can be within the range.  Taking advantage of such information makes it more feasible to 
remove the correct nodes. 

You may define private helper methods to solve this problem, but otherwise you may not call any other 
methods of the class nor create any data structures such as arrays, lists, etc. 


