
1 of 4

CSE 143, Winter 2010
Programming Assignment #2: SortedIntList (20 points)

Due Thursday, January 21, 2010, 11:30 PM
This program focuses on implementing a collection and inheritance. Turn in two files named SortedIntList.java
and MyListTest.java from the Homework section of the course web site. You will also need the support file
ArrayIntList.java from the Homework section of the course web site; place it in the same folder as your program.
For this assignment you are to write a class called SortedIntList that is a variation of the ArrayIntList class written
in lecture. Your class will be an extension (a subclass) of the original ArrayIntList that adds new functionality and
modifies some existing functionality. Your class has two primary differences from the original list:

• A SortedIntList must maintain its list of integers in sorted (non-decreasing) order.
• A SortedIntList has an option to specify that the numbers should be unique (no duplicates).

The ArrayIntList class already has the following constructors and methods (along with a few others):
public ArrayIntList() constructs an empty list of a default capacity (10)
public ArrayIntList(int capacity) constructs an empty list with given capacity
public void add(int value) appends given value to end of list
public void add(int index, int value) inserts given value at given index, shifting subsequent values right
public int get(int index) returns the element at the given index
public int indexOf(int value) returns index of first occurrence of given value (< 0 if not found)
public void remove(int index) removes value at given index, shifting subsequent values left
public int size() returns current number of elements in the list
public String toString() returns a string version of the list, such as "[4, 5, 17]"

The new class should extend ArrayIntList, adding a few new methods and constructors, and overriding some existing
methods to improve their functionality. You should not modify the contents of ArrayIntList.java in any way; if your
code does not work with the provided ArrayIntList.java, you will lose points. You will add the following:
public SortedIntList() constructs an empty list of a default capacity, allowing duplicates
public SortedIntList(boolean unique) constructs empty list of default capacity and given "unique" setting
public SortedIntList(int capacity) constructs an empty list with given capacity, allowing duplicates
public SortedIntList(
 boolean unique, int capacity)

constructs an empty list with given capacity and "unique" setting

public void add(int value) possibly adds given value to list, maintaining sorted order
public void add(int index, int value) possibly adds given value to list, maintaining sorted order
public boolean getUnique() returns whether only unique values are allowed in the list
public int indexOf(int value) returns index of an occurrence of the given value (< 0 if not found)
public int max() returns the maximum integer value stored in the list

(throws a NoSuchElementException if the list is empty)
public int min() returns the minimum integer value stored in the list

(throws a NoSuchElementException if the list is empty)
public void setUnique(boolean unique) sets whether only unique values are allowed in the list; if set to

true, immediately removes any existing duplicates from the list
public String toString() returns a string version of the list, such as "S:[4, 5, 17]U"

Your class will have a field to keep track of whether or not it is limited to unique values. The value can be set to your
second constructor or by calling setUnique. Think of it as an on/off switch that each list has.
You will override the two add methods to ensure that elements are added in sorted order, and you will override the
indexOf method to be more efficient by taking advantage of the list's sorted order. You will also override toString.
All other methods inherited from ArrayIntList should use the default inherited behavior and should not be overridden.

2 of 4

Implementation Details:
public SortedIntList()

This constructor should initialize a list of default capacity (10) with uniqueness set to false (duplicates allowed).
public SortedIntList(boolean unique)
This constructor should initialize a list of default capacity (10) with uniqueness set to the given value.
public SortedIntList(int capacity)

This constructor should initialize a list with the given capacity and with uniqueness set to false (duplicates allowed). If
the capacity is negative, an IllegalArgumentException should occur. ArrayIntList's constructor does so as well.
public SortedIntList(boolean unique, int capacity)
This constructor should initialize a list with the given capacity and with the given setting for whether or not to limit the
list to unique values (true means no duplicates, false means duplicates are allowed). See get/setUnique below. If
the capacity is negative, an IllegalArgumentException should occur. ArrayIntList's constructor does so as well.

public void add(int value)
public void add(int index, int value)
The two add methods should be overridden to ensure a sorted list. (The single-parameter add should no longer add at the
end of the list, and the two-parameter add should ignore the index passed by the caller.) Your methods should instead
add the value at an appropriate place to keep the list in sorted order. For example, if the list contains the values [-3, 7,
18, 42] and the user adds 27, afterward the list should contain the values [-3, 7, 18, 27, 42] in that order. (See indexOf.)
Both add methods should behave the same in a SortedIntList; if a client adds at an index, the index passed is ignored.
The add method has to pay attention to whether the client has requested unique values only. If so, your method must not
allow any element to be added if that value is already in the list. You also should not re-sort the entire list every time an
element is added. Finding the correct index and inserting the element there is more efficient than re-sorting the whole list.

public boolean getUnique()

This method should return the current uniqueness setting (true means no duplicates, false means duplicates allowed).
public void setUnique(boolean value)

Allows client to set whether to allow duplicates in the list (true means no duplicates, false means duplicates allowed).
If the unique switch is set to off (false), the list allows any integer to be added, even if that integer is already found in
the list (a duplicate). If the unique switch is on (true), any call to add that passes a value already in the list has no effect.
In other words, when the unique switch is true, the add method should not allow any duplicates to be added to the list.
For example, if you start with an empty list that has the unique switch off, adding three 42s will generate the list [42, 42,
42]. But if your list has the unique switch on, adding those same three 42s would generate the single-element list [42].
If the client sets unique to true when there are already duplicates in the list, the setUnique method should remove all
of the duplicates and should ensure that no future duplicates can be added unless the client changes the setting back to
false later. If the client changes the unique setting to false, the contents of the list do not immediately change in any
way, but it will mean that duplicates could be added to the list in the future.

public int max()
This method should return the largest element value contained in the list. For example, in the list [4, 4, 17, 39, 58], the
value 58 is largest. If the list is empty (has no largest element), you should throw a NoSuchElementException.

public int min()
This method should return the smallest element value contained in the list. For example, in the list [4, 4, 17, 39, 58], the
value 4 is smallest. If the list is empty (has no smallest element), you should throw a NoSuchElementException.

public String toString()
This method should return a comma-separated string of the list's elements, preceded by "S:". If the list's "unique"
switch is on, the string should end with "U". For example, if the elements are [4, 4, 17, 39, 58] and unique is off, return
 "S:[4, 4, 17, 39, 58]". If the elements are [-3, 5, 15] and unique is on, return "S:[-3, 5, 15]U". Note the U.

3 of 4

public int indexOf(int value)
This method should be overridden to take advantage of the fact that the list is sorted. It should use the faster binary
search algorithm rather than the sequential search used in ArrayIntList. If the element is found in the list, your
indexOf should return its position. The element might occur in the list multiple times; if so, you may return any index at
which that element value appears. If the element is not found in the list, your method should return a negative number.
You must use the built-in Arrays.binarySearch method for all index location searching ("Where is a value currently
located?" "Where should I insert a new value?"). You can find its documentation in the Java API from the Links section
of the course web site. For example, to search indexes 0-16 of an array called data for values 42 and 66, you could write:
// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
int[] data = {-4, 2, 7, 10, 15, 20, 22, 25, 30, 36, 42, 50, 56, 68, 85, 92, 103, 0, 0};
int index1 = Arrays.binarySearch(data, 0, 17, 42); // index1 is 10
int index2 = Arrays.binarySearch(data, 0, 17, 66); // index2 is -14

When Arrays.binarySearch is unable to find a value in the list, it returns a negative number one less than the index at
which the value would have been found if it had been in the array (sometimes called the "insertion point"). For
example, in the example above the value 66 is not found, but if it had been in the list, it would have been at index 13;
therefore the search returns -14. You should take advantage of this information when adding new elements to your list.
To get access to the Arrays class, you should import java.util.*; at the beginning of your class.

Testing Program (MyListTest.java):
Along with your SortedIntList, you should write and turn in a brief testing program named MyTest.java. This
program should have a main method that runs and tests your sorted int list by creating at least two lists, adding some
elements to them, calling various other methods, and printing and/or checking the results. This part of the assignment is
worth only a few points, but we want you to practice testing your own code. For full credit, your testing program's main
method body must contain at least 15 lines, and you must call at least 5 different methods on the list(s) you create.
There are also several provided testing programs on the course web site. You may ask, "Why do I need to write my own
testing program when these testing programs are already provided?" Our testing programs are large and complex. It can
be good to have a smaller test that runs just a few methods that you are working on. We encourage you to add to this
program as you develop your SortedIntList. If you want to write a more complex test, that is fine, but not required.

Development Strategy:
We suggest that you develop the program in the following three stages:

1. Write a first version that always allows duplicates and doesn't worry at all about the issue of unique values. Just
keep your list in sorted order and use binary search to speed up searching. This stage involves the following:

a. Create your class file and the overall class header.
b. Write the constructors.
c. Modify the two add methods so that they preserve sorted order. You may need to use binary search here

if your solution involves two steps (first locate, then insert).
d. Modify indexOf so that it uses the binary search method; also write max and min.

2. Modify your code so it keeps track of whether the client wants only unique values. Add any state necessary and
modify constructor(s) as needed. Next modify add so that it doesn't add duplicates if the unique setting is true.

3. Write the getUnique and setUnique methods. Remember that if the client calls setUnique and sets the value
to true, you must remove any duplicates currently in the list.

We will provide testing code for each of these three stages. For this program only, you are allowed to discuss how to
write testing code with other students. Keep in mind that our tests are not guaranteed to be exhaustive. In particular, you
will want to do a lot of simpler testing before you try running any of these high-powered tests that really push the limits.
The provided testing code does not test every possible situation, and we do not guarantee full credit for passing the
provided tests. But it will give you some good examples of the kind of testing code we want you to write.

4 of 4

References:
Textbook sections 13.1 and 13.3 discuss the binary search algorithm in more detail. 13.3 discusses how it is implemented
and its return values in detail. Seeing how the search is implemented might be helpful for understanding how to solve the
overall problem.

Style Guidelines and Grading:
You may not use any features from Java's collection framework on this assignment, such as ArrayList or other pre-
existing collection classes. You also may not use the Arrays.sort method to sort your list.
A major focus of our style grading is redundancy. As much as possible you should avoid redundancy and repeated logic
within your code, such as by factoring out common code from if/else statements, creating "helper" methods to capture
repeated code, or having some of your methods/constructors call others if their behaviors are related. Any additional
methods you add to SortedIntList beyond those specified should be private so that outside code cannot call them.
Note that even constructors can be redundant; if two or more constructors in your class (or the superclass) contain similar
or identical code, you should find a way to reduce this redundancy by making them call each other as appropriate.
Another way you should avoid redundancy is by utilizing the behavior you inherit from the ArrayIntList superclass.
You should not re-implement any ArrayIntList behavior from that is not modified in your class. Also, if part of your
class's new behavior can make use of the superclass's behavior, you should call constructors/methods from the superclass.
For example, the ArrayIntList already contains code for adding and removing elements to the list at a specific index,
so if your SortedIntList code needs to do those things, you should not re-implement that functionality. Recall that
you can access behavior from a superclass even if it has been overridden using the super keyword as shown in lecture.
Properly encapsulate your objects by making any data fields in your class private. Avoid unnecessary fields; use fields
to store important data of your objects but not to store temporary values only used within a single call to one method.
Fields should always be initialized inside a constructor or method, never at declaration.
You should follow good general style guidelines such as: appropriately using control structures like loops and if/else
statements; avoiding redundancy using techniques such as methods, loops, and if/else factoring; properly using
indentation, good variable names, and proper types; and not having any lines of code longer than 100 characters.
Commenting will be more of a style focus on this program (and future programs) than it was on the last assignment. You
should comment your code with a heading at the top of your class with your name, section, and a description of the
overall program. Also place a comment heading on top of each method, and a comment on any complex sections of your
code. Not only will we look for the existence of comments on this assignment, but we also have stricter expectations
about the quality of their content. Comment headings should use descriptive complete sentences and should be written in
your own words, explaining each method's behavior, parameters, return values, pre/post-conditions as appropriate. If the
method potentially throws any exceptions, comment this and explain what exceptions it throws and under what conditions
it will throw them. Be concise but specific in your comments. The ArrayIntList class, along with other lecture
programs and the revised Number class from section this week, are good examples of proper commenting that would
receive full credit on this assignment.
For reference, our solution to this program is around 110 lines long including comments (and has 46 "substantive" lines
according to our Indenter tool on the course web site). But you do not have to match this; it's just listed as a sanity check.

