
CSE 143
Lecture 6

More ArrayIntList; Inheritance

reading: 15.1 - 15.2; 9.1, 9.3 - 9.4

slides created by Marty Stepp
http://www.cs.washington.edu/143/

2

Finishing ArrayIntList
• Let's add the following features to ArrayIntList:

– a constant for the default list capacity
– better encapsulation and protection of implementation details
– a better way to print list objects

3

Class constants
public static final type name = value;

• class constant: a global, unchangeable value in a class
– used to store and give names to important values used in code
– documents an important value; easier to find and change later

• classes will often store constants related to that type
– Math.PI
– Integer.MAX_VALUE, Integer.MIN_VALUE
– Color.GREEN

// default array length for new ArrayIntLists
public static final int DEFAULT_CAPACITY = 10;

4

"Helper" methods
• Currently our list class has a few useful "helper" methods:

– public void checkResize()

– public void checkIndex(int index, int min, int max)

• We wrote them to help us implement other required methods.

• We don't want clients to call these methods; they are internal.
– How can we stop clients from calling them?

5

A private method
private type name(type name, ..., type name) {

statement(s);
}

• a private method can be seen/called only by its own class
– encapsulated, similar to fields
– your object can call the method on itself, but clients cannot call it
– useful for "helper" methods that clients shouldn't directly touch

private void checkIndex(int index, int min, int max) {

if (index < min || index > max) {

throw new IndexOutOfBoundsException(index);

}

}

6

Printing an ArrayIntList
• Currently our list class has a print method:

// client code
ArrayIntList list = new ArrayIntList();
...
list.print();

– Why is this a bad idea? What would be better?

7

The toString method

• Tells Java how to convert an object into a String
ArrayIntList list = new ArrayIntList();
System.out.println("list is " + list);

• Syntax:
public String toString() {

code that returns a suitable String;
}

• Every class has a toString, even if it isn't in your code.
– The default is the class's name and a hex (base-16) number:
ArrayIntList@9e8c34

8

toString solution
// Returns a String representation of the list.
public String toString() {

if (size == 0) {
return "[]";

} else {
String result = "[" + elementData[0];
for (int i = 1; i < size; i++) {

result += ", " + elementData[i];
}
result += "]";
return result;

}
}

9

Exercise
• Write a class called StutterIntList.

– Its constructor accepts an integer stretch parameter.
– Every time an integer is added, the list will actually add stretch

number of copies of that integer.

• Example usage:
StutterIntList list = new StutterIntList(3);

list.add(7); // [7, 7, 7]
list.add(-1); // [7, 7, 7, -1, -1, -1]
list.add(2, 5); // [7, 7, 5, 5, 5, 7, -1, -1, -1]
list.remove(4); // [7, 7, 5, 5, 7, -1, -1, -1]

System.out.println(list.getStretch()); // 3

10

Inheritance
• inheritance: Forming new classes based on existing ones.

– a way to share/reuse code between two or more classes

– superclass: Parent class being extended.
– subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

11

An Employee class
public class Employee {

...

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}
}

• Lawyers, Secretaries, etc. have similar behavior to the above.
• How to implement those classes without redundancy?

12

Inheritance syntax
public class name extends superclass {

– Example:

public class Lawyer extends Employee {

...

}

• By extending Employee, each Lawyer object now:
– receives a copy of each method from Employee automatically
– can be treated as an Employee by client code

13

Overriding methods
• override: To replace a superclass's method by writing a new

version of that method in a subclass.

– No special syntax is required to override a method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {

// overrides getSalary method in Employee class;

// give Lawyers a $5K raise

public double getSalary() {

return 45000.00;

}

}

14

super keyword
• Subclasses can call overridden methods with super

super.method(parameters)

– Example:
public class Lawyer extends Employee {

// give Lawyers a $5K raise (better)
public double getSalary() {

double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}
}

– This version makes sure that Lawyers always make $5K more
than Employees, even if the Employee's salary changes.

15

Calling super constructor
super(parameters);

– Example:

public class Lawyer extends Employee {
public Lawyer(String name) {

super(name); // calls Employee constructor
}
...

}

– super allows a subclass constructor to call a superclass one.
– The super call must be the first statement in the constructor.
– Constructors are not inherited; If you extend a class, you must

write all the constructors you want your subclass to have.

16

Exercise solution
public class StutterIntList extends ArrayIntList {

private int stretch;

public StutterIntList(int stretchFactor) {
super();
stretch = stretchFactor;

}

public StutterIntList(int stretchFactor, int capacity) {
super(capacity);
stretch = stretchFactor;

}

public void add(int value) {
for (int i = 1; i <= stretch; i++) {

super.add(value);
}

}

public void add(int index, int value) {
for (int i = 1; i <= stretch; i++) {

super.add(index, value);
}

}

public int getStretch() {
return stretch;

}
}

17

Subclasses and fields
public class Employee {

private double salary;
...

}

public class Lawyer extends Employee {
...
public void giveRaise(double amount) {

salary += amount; // error; salary is private
}

}

• Inherited private fields/methods cannot be directly accessed by
subclasses. (The subclass has the field, but it can't touch it.)
– How can we allow a subclass to access/modify these fields?

18

Protected fields/methods
protected type name; // field

protected type name(type name, ..., type name) {
statement(s); // method

}

• a protected field or method can be seen/called only by:
– the class itself, and its subclasses
– also by other classes in the same "package" (discussed later)
– useful for allowing selective access to inner class implementation

public class Employee {
protected double salary;
...

}

