CSE 143 Lecture 8

More Stacks and Queues;

 Complexity (Big-Oh)reading: 13.1-13.3
slides created by Marty Stepp
http://www.cs.washington.edu/143/

Stack/queue exercise

- A postfix expression is a mathematical expression but with the operators written after the operands rather than before.

```
1 + 1 becomes 1 1 +
1 + 2 * 3 + 4 becomes 1 2 3 * + 4 +
```

- supported by many kinds of fancy calculators
- never need to use parentheses
- never need to use an = character to evaluate on a calculator
- Write a method postfixEvaluate that accepts a postfix expression string, evaluates it, and returns the result.
- All operands are integers; legal operators are + , -, *, and / postFixEvaluate("5 24 * + 7-") returns 6

Postfix algorithm

- The algorithm: Use a stack
- When you see an operand, push it onto the stack.
- When you see an operator:
- pop the last two operands off of the stack.
- apply the operator to them.
- push the result onto the stack.
- When you're done, the one remaining stack element is the result.
"5 24 * + 7 -"
5
2
4
*

$+$
7

Exercise solution

// Evaluates the given prefix expression and returns its result. // Precondition: string represents a legal postfix expression public static int postfixEvaluate(String expression)

Stack<Integer> $s=$ new Stack<Integer>(); Scanner input = new Scanner(expression); while (input.hasNext())
if (input.hasNextInt()) \{ // an operand (integer)
s.push(input.nextInt());
\} else \{ // an operator String operator = input. next();
int operand 2 = s.pop(); int operand = s.pop();
if (operator.equals("+")) \{
s.push (operand + operand);
\} ~ e l s e ~ i f ~ (o p e r a t o r ~ . e q u a l s (" - ")) ~ \ { ~ }
s.push(operand1 - operand) ;
\} ~ e l s e ~ i f ~ (o p e r a t o r ~ . e q u a l s (" * ")) ~ \ { ~ }
s.push(operand1 * operand);
\} else \{
s.push(operand1 / operand);
\}
\}
\}
return s.pop();

Stack/queue motivation

- Sometimes it is good to have a collection that is less powerful, but is optimized to perform certain operations very quickly.
- Stacks and queues do few things, but they do them efficiently.

Runtime Efficiency (13.2)

- efficiency: A measure of the use of computing resources by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time
- Assume the following:
- Any single Java statement takes the same amount of time to run.
- A method call's runtime is measured by the total of the statements inside the method's body.
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

Efficiency examples

statement1; statement2; 〕 3 statement3;

for (int i = 1; i <= N; i++) statement5; statement6; statement7;

Efficiency examples 2

- How many statements will execute if $\mathrm{N}=10$? If $\mathrm{N}=1000$?

Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N . - growth rate: Change in runtime as N changes.
- Say an algorithm runs $\mathbf{0 . 4} \mathbf{N}^{\mathbf{3}} \mathbf{+} \mathbf{2 5} \mathbf{N}^{\mathbf{2}} \mathbf{+ 8 N + 1 7}$ statements.
- Consider the runtime when N is extremely large .
- We ignore constants like 25 because they are tiny next to N .
- The highest-order term $\left(\mathrm{N}^{3}\right)$ dominates the overall runtime.
- We say that this algorithm runs "on the order of" N^{3}.
- or $\mathbf{O}\left(\mathbf{N}^{3}\right)$ for short ("Big-Oh of N cubed")

Complexity classes

- complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N .

Class	Big-Oh	If you double \mathbf{N}, \ldots	Example
constant	$\mathrm{O}(1)$	unchanged	10 ms
logarithmic	$\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$	increases slightly	175 ms
linear	$\mathrm{O}(\mathrm{N})$	doubles	3.2 sec
log-linear	$\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$	slightly more than doubles	6 sec
quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	quadruples	1 min 42 sec
cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	multiplies by 8	55 min
\ldots	\ldots	\ldots	\ldots
exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$	multiplies drastically	$5 * 10^{61}$ years

Collection efficiency

- Efficiency of various operations on different collections:

Method	ArrayList	SortedIntList	Stack	Queue
add (or push)	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
	add (index, value)	$\mathrm{O}(\mathrm{N})$		-
	-			
indexOf	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(?)$	-	-
get	$\mathrm{O}(1)$	$\mathrm{O}(1)$	-	-
remove	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
set	$\mathrm{O}(1)$	$\mathrm{O}(1)$	-	-
size	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$

Binary search (13.1, 13.3)

- binary search successively eliminates half of the elements.
- Algorithm: Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.
- Which indexes does the algorithm examine to find value 22?
- What is the runtime complexity class of binary search?

| index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| value | -4 | -1 | 0 | 2 | 3 | 5 | 6 | 8 | 11 | 14 | 22 | 29 | 31 | 37 | 56 |

Binary search runtime

- For an array of size N , it eliminates $1 / 2$ until 1 element remains. N, N/2, N/4, N/8, ..., 4, 2, 1
- How many divisions does it take?
- Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N ? $1,2,4,8, \ldots, N / 4, N / 2, N$
- Call this number of multiplications "x".

$$
\begin{aligned}
& 2^{x}=N \\
& x=\log _{2} N
\end{aligned}
$$

- Binary search is in the logarithmic complexity class.

Range algorithm

What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array; // the difference between elements furthest apart // example: range (\{17, 29, 11, 4, 20,8$\}$) is 25 public static int range(int[] numbers) \{ int maxDiff $=0 ; \quad / /$ look at each pair of values for (int $i=0 ; i<n u m b e r s . l e n g t h ; i++)\{$ for (int $j=0 ; j<n u m b e r s . l e n g t h ; j++$) $\{$ int diff = Math.abs(numbers[j] - numbers[i]);
if (diff > maxDiff) \{ maxDiff = diff;
\}
\}
return diff;

Range algorithm 2

The algorithm is $\mathbf{O}\left(\mathbf{N}^{\mathbf{2}} \mathbf{)}\right.$. A slightly better version:

// returns the range of values in the given array;
// the difference between elements furthest apart // example: range (\{17, 29, 11, 4, 20,8$\}$) is 25 public static int range(int[] numbers) \{
int maxDiff $=0 ; \quad / /$ look at each pair of values for (int $i=0 ; i<n u m b e r s . l e n g t h ; i++)\{$
for (int $j=i+1 ; j<n u m b e r s . l e n g t h ; j++$) $\{$
int diff = Math.abs(numbers[j] - numbers[i]);
if (diff > maxDiff) \{
maxDiff = diff;
\}
\}
\}
return diff;

Range algorithm 3

This final version is $\mathrm{O}(\mathrm{N})$. It runs MUCH faster:

// returns the range of values in the given array;
// example: range(\{17, 29, 11, 4, 20, 8\}) is 25 public static int range(int[] numbers) \{

```
int max = numbers[0]; // find max/min values
```

int min = max;
for (int i = 1; i < numbers.length; i++) \{
if (numbers[i] < min) \{
min = numbers[i];
\}
if (numbers[i] > max) \{
max $=$ numbers[i];
\}
\}
return max - min;

Runtime of first 2 versions

- Version 1:

- Version 2:

N	Runtime (ms)	30000
1000	16	25000
2000	16	20000
4000	110	15000
8000	406	10000
16000	1578	5000
32000	6265	
64000	25031	

Runtime of 3rd version

- Version 3:

\mathbf{N}	Runtime (ms)
1000	0
2000	0
4000	0
8000	0
16000	0
32000	0
64000	0
128000	0
256000	0
512000	0
1 e 6	0
2 e 6	16
4 e 6	3 I
8 e 6	47
I .67 e 7	94
3.3 e 7	188
6.5 e 7	453
1.3 e 8	797
2.6 e 8	1578

Input size (N)

