
CSE 143
Lecture 22

I/O Streams; Exceptions; Inheritance

read 9.3, 6.4

slides created by Marty Stepp
http://www.cs.washington.edu/143/

2

Input and output streams
• stream: an abstraction of a source or target of data

– 8-bit bytes flow to (output) and from (input) streams

• can represent many data sources:
– files on hard disk
– another computer on network
– web page
– input device (keyboard, mouse, etc.)

• represented by java.io classes
– InputStream

– OutputStream

3

Streams and inheritance
• all input streams extend common superclass InputStream;

all output streams extend common superclass OutputStream
– guarantees that all sources of data have the same methods
– provides minimal ability to read/write one byte at a time

4

Input streams
• constructing an input stream:

(various objects also have methods to get streams to read them)

• methods common to all input streams:

DescriptionMethod

stops readingpublic void close() throws IOException

reads/returns a byte
(-1 if no bytes remain)

public int read() throws IOException

public SequenceInputStream(InputStream a, InputStream b)

public ByteArrayInputStream(byte[] bytes)

Constructor
public FileInputStream(String name) throws IOException

5

Output streams
• constructing an output stream:

• methods common to all output streams:

forces any writes in
buffers to be written

public void flush() throws IOException

DescriptionMethod

stops writing
(also flushes)

public void close() throws IOException

writes a bytepublic void write(int b) throws IOException

public PrintStream(File file)
public PrintStream(String fileName)

public ByteArrayOutputStream()

Constructor
public FileOutputStream(String name) throws IOException

6

int vs. char
• The read and write methods work an int (byte) at a time.

• For text files, each byte is just an ASCII text character.

– an int can be cast to char as needed:
FileInputStream in = new FileInputStream("myfile.txt");
int n = in.read(); // 81
char ch = (char) n; // 'Q'

– a char can be passed where an int is wanted without casting:
FileOutputStream out = new FileOutputStream("outfile.txt");
char ch = 'Q';
out.write(ch);

7

I/O and exceptions
• exception: An object representing an error.

– checked exception: One that must be
handled for the program to compile.

• Many I/O tasks throw exceptions.
– Why?

• When you perform I/O, you must either:
– also throw that exception yourself
– catch (handle) the exception

8

Throwing an exception
public type name(params) throws type {

•throws clause: Keywords on a method's header that state
that it may generate an exception.

– Example:

public class ReadFile {
public static void main(String[] args)

throws FileNotFoundException {

"I hereby announce that this method might throw an exception,
and I accept the consequences if it happens."

9

Catching an exception
try {

statement(s);
} catch (type name) {

code to handle the exception
}

– The try code executes. If the given exception occurs, the try
block stops running; it jumps to the catch block and runs that.

try {
Scanner input = new Scanner(new File("foo"));
System.out.println(input.nextLine());

} catch (FileNotFoundException e) {
System.out.println("File was not found.");

}

10

Dealing with an exception
• All exception objects have these methods:

• Some reasonable ways to handle an exception:
– try again; re-prompt user; print a nice error message;

quit the program; do nothing (!)

other methodsgetCause, getStackTrace,
printStackTrace

DescriptionMethod

opens a stream for reading data
from the document at this URL

public InputStream openStream()
throws IOException

a stack trace of the line
numbers where error occurred

public String toString()

text describing the errorpublic String getMessage()

11

Exception inheritance
• All exceptions extend from a common superclass Exception

12

Inheritance and exceptions
• You can catch a general exception to handle any subclass:

try {
Scanner input = new Scanner(new File("foo"));
System.out.println(input.nextLine());

} catch (Exception e) {
System.out.println("File was not found.");

}

• Similarly, you can state that a method throws any exception:
public static void foo() throws Exception { ...

– Are there any disadvantages of doing so?

13

Exceptions and errors
• There are also Errors, which represent serious Java problems.

– Error and Exception have common superclass Throwable.
– You can catch an Error (but you probably shouldn't)

14

Reading from the web
– class java.net.URL represents a web page's URL
– we can connect to a URL and read data from that web page

DescriptionMethod/Constructor

opens a stream for reading data
from the document at this URL

public InputStream openStream()
throws IOException

returns various parts of the URL
as strings/integers

public String getFile(),
getHost(), getPath(),
getProtocol()

public int getPort()

creates a URL object
representing the given address

public URL(String address)
throws MalformedURLException

15

Exercise
• Write a class Downloader with the following behavior:

– public Downloader(String url)

• Initializes the downloader to examine the given URL.

– public void download(String targetFileName)

• Downloads the file from the URL to the given file name on disk.

• Write client program DownloadMain to use Downloader:
URL to download? foo bar
Bad URL! Try again: http://zombo.com/
Target file name: out.html

Contents of out.html:
<html>
<head>
<title>ZOMBO</title>
...
</body>
</html>

16

Exercise solution
import java.io.*;
import java.net.*;

public class Downloader {
private URL url;

// Constructs downloader to read from the given URL.
public Downloader(String urlString) throws MalformedURLException {

url = new URL(urlString);
}

// Reads downloader's URL and writes contents to the given file.
public void download(String targetFileName) throws IOException {

InputStream in = url.openStream();
FileOutputStream out = new FileOutputStream(targetFileName);
while (true) {

int n = in.read();
if (n == -1) { // -1 means end-of-file

break;
}
out.write(n);

}
in.close();
out.close();

}
}

17

Exercise solution 2
import java.io.*;
import java.net.*;
import java.util.*;

public class DownloadMain {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("URL to download? ");
String urlString = console.nextLine();

Downloader down = null; // create a downloader;
while (down == null) { // re-prompt the user if this fails

try {
down = new Downloader(urlString);

} catch (MalformedURLException e) {
System.out.print("Bad URL! Try again: ");
urlString = console.nextLine();

}
}

System.out.print("Target file name: ");
String targetFileName = console.nextLine();

try { // download bytes to file (print error if it fails)
down.download(targetFileName);

} catch (IOException e) {
System.out.println("I/O error: " + e.getMessage());

}
}

}

18

Exercise 2
• Write class TallyDownloader to add behavior to Downloader:

– public TallyDownloader(String url)

– public void download(String targetFileName)

• Downloads the file, and also prints the file to the console, and prints
the number of occurrences of each kind of character in the file.

URL to download? http://zombo.com/
<html>
<head>
<title>ZOMBO</title>
<!--Please Visit 15footstick.com our other website. ThankZ -->
...
</body>
</html>
{
=21, =42, !=1, "=18, #=4, %=4, ,=3, -=14, .=10, /=18, 0=15, 1=9,

2=2, 3=1, 4=5, 5=5, 6=4, 7=1, 8=3, 9=2, :=3, ;=1, <=17, ==24,
>=17, ?=1, A=1, B=3, C=2, D=3, E=2, F=19, M=1, O=2, P=3, S=1, T=2,
V=2, Z=2, _=2, a=42, b=13, c=27, d=18, e=47, f=7, g=10, h=28,
i=32, j=2, k=5, l=24, m=21, n=17, o=36, p=12, q=3, r=17, s=24,
t=37, u=8, v=10, w=15, x=5, y=6, z=2}

19

Inheritance
• inheritance: Forming new classes based on existing ones.

– a way to share/reuse code between two or more classes

– superclass: Parent class being extended.
– subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

– is-a relationship: Each object of the subclass also "is a(n)"
object of the superclass and can be treated as one.

20

Inheritance syntax
public class name extends superclass {

public class Lawyer extends Employee {
...

}

• override: To replace a superclass's method by writing a new
version of that method in a subclass.

public class Lawyer extends Employee {

// overrides getSalary method in Employee class;

// give Lawyers a $5K raise

public double getSalary() {

return 55000.00;

}

}

21

super keyword
• Subclasses can call inherited methods/constructors with super

super.method(parameters)
super(parameters);

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years); // calls Employee constructor
}

// give Lawyers a $5K raise
public double getSalary() {

double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}
}

– Lawyers now always make $5K more than Employees.

22

Exercise solution
public class TallyDownloader extends Downloader {

public TallyDownloader(String url) throws MalformedURLException {
super(url); // call Downloader constructor

}

// Reads from URL and prints file contents and tally of each char.
public void download(String targetFileName) throws IOException {

super.download(targetFileName);

Map<Character, Integer> counts = new TreeMap<Character, Integer>();
FileInputStream in = new FileInputStream(targetFileName);
while (true) {

int n = in.read();
if (n == -1) {

break;
}
char ch = (char) n;
if (counts.containsKey(ch)) {

counts.put(ch, counts.get(ch) + 1);
} else {

counts.put(ch, 1);
}
System.out.print(ch);

}
in.close();
System.out.println(counts); // print map of char -> int

}
}

23

Exercise solution 2
import java.io.*;
import java.net.*;
import java.util.*;

public class DownloadMain {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("URL to download? ");
String urlString = console.nextLine();

Downloader down = null; // create a tallying downloader;
while (down == null) { // re-prompt the user if this fails

try {
down = new TallyDownloader(urlString);

} catch (MalformedURLException e) {
System.out.print("Bad URL! Try again: ");
urlString = console.nextLine();

}
}

...
}

}

