Exploration Session 4: RSA / Cryptography

Melissa Winstanley mwinst@cs.washington.edu
(based on slides by Stuart Reges, Daniel Halperin)

DAN BROWN

Cryptography

- The science of keeping your information safe
- Only one small bit of larger system
- Physical security
- Operating system security
- Network security
- Users
- Cryptography
- "Security only as strong as the weakest link"

Some Terminology

- Alice wants to send a secret message to Bob
- Eve is eavesdropping
- Cryptographers tell Alice and Bob how to encode their messages
- Cryptanalysts help Eve to break the code
- Historic battle between the cryptographers and the cryptanalysts that continues today

Private-Key Cryptography

- "Traditional" method of encryption
- Encrypt using a function of a key k
- Alice encrypts with $c=(p+k) \bmod 26$
- This is called a shift cipher
- Decrypt using the inverse function of key k - Bob decrypts with $p=(c-k) \bmod 26$
- Anyone who knows the key can read the message
- Alice and Bob must transmit the key securely

Public-Key Cryptography

- Proposed by Diffie, Hellman, Merkle
- First big idea: use a function that cannot be reversed (a humpty dumpty function)
- Bob tells Alice a function to apply using a public key, and Eve can't compute the inverse
- Second big idea: use asymmetric keys (sender and receiver use different keys)
- Bob has a private key to compute the inverse
- Primary benefit: doesn't require the sharing of a secret key

RSA Encryption

- Named for Ron Rivest, Adi Shamir, and Leonard Adleman
- Invented in 1977, still the premier approach
- Requires large primes (100+ digit primes)
- Effective because there is no current way to factor large primes

Review of mod

Basis of RSA

- Based on Fermat's Little Theorem:

$$
\begin{aligned}
& \mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p}) \text { for prime } \mathrm{p} \\
& \rightarrow \operatorname{gcd}(\mathrm{a}, \mathrm{p})=1
\end{aligned}
$$

- Slight variation:

$$
\begin{aligned}
& \mathrm{a}^{(\mathrm{p}-1)(\mathrm{q}-1) \equiv 1(\bmod \mathrm{pq}) \text { for distinct primes } \mathrm{p}, \mathrm{q}} \\
& \rightarrow \operatorname{gcd}(\mathrm{a}, \mathrm{pq})=1
\end{aligned}
$$

Example of RSA

- Pick two primes p and q , compute $\mathrm{n}=\mathrm{p} \times \mathrm{q}$
- Pick two numbers e and d, such that:

$$
\mathrm{e} \times \mathrm{d}=(\mathrm{p}-1)(\mathrm{q}-1) \mathrm{k}+1(\text { for some } \mathrm{k})
$$

- Publish n and e (public key), encode with:
(original message) ${ }^{\mathrm{e}} \bmod \mathrm{n}$
- Keep d, p and q secret (private key), decode with:
(encoded message) ${ }^{\text {d }} \bmod n$

Why does it work?

- Original message is carried to the e power, then to the d power:
$\left(\mathrm{msg}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{msg}{ }^{\mathrm{ed}}$
- Remember how we picked e and d:
$\mathrm{msg}^{\mathrm{ed}}=\operatorname{msg}^{(p-1)(q-1) \mathrm{k}+1}$
- Apply some simple algebra:
$\mathrm{msg}^{\text {ed }}=\left(\mathrm{msg}^{(\mathrm{p}-1)(\mathrm{q}-1)}\right)^{\mathrm{k}} \times \mathrm{msg}^{1}$
- Applying Fermat's Little Theorem:
$\mathrm{msg}^{\text {ed }}=(1)^{\mathrm{k}} \times \mathrm{msg}^{1}=\mathrm{msg}$

Politics

- British discovered RSA first but kept it secret
- Phil Zimmerman tried to bring cryptography to the masses w/PGP
- Investigated as an arms dealer by FBI and a grand jury
- Shor's algorithm would break RSA if only we had a quantum computer
- The NSA hires more mathematicians than any other organization
http://www.nsa.gov/kids/

