
CSE 143 Final Part 1, August 18, 2011 Sample Solution

 Page 1 of 6

Question 1. (16 points) Binary Search Trees. (a) Draw a picture that shows the integer binary search

tree that results when the following numbers are inserted into a new, empty binary search tree in the

order given:

 42 17 10 50 15 20 12

(b) Write down the order in which the nodes in your tree would be visited using the following tree

traversal orders:

preorder 42 17 10 15 12 20 50

postorder 12 15 10 20 17 50 42

inorder 10 12 15 17 20 42 50

Note: When grading part (b), answers that corresponded correctly to the tree drawn in part (a)

received full credit, even if there were errors in the part (a) tree.

42

50 17

10 20

15

12

CSE 143 Final Part 1, August 18, 2011 Sample Solution

 Page 2 of 6

Question 2. (8 points) Binary Search Trees. Draw a picture that shows an integer binary search with

minimum height that contains the following numbers. If there is more than one possible way to store

the nodes in a binary search tree with minimum height, then you can show any of the possible solutions.

 42 17 10 50 15 20 12

(Note: This is exactly the same data as in the previous problem, except that this time you’re being asked

to construct a minimum height binary search tree that contains the numbers. The numbers can be

added to the tree in any order, not necessarily the one given. Hint: in a minimum-height tree, both

subtrees of each interior node will have approximately the same number of nodes.)

17

12 42

10 15 20 50

CSE 143 Final Part 1, August 18, 2011 Sample Solution

 Page 3 of 6

Question 3. (20 points) Tree search. Suppose we have a class that stores a set of integer values with no
duplicates. The class uses a binary search tree internally to store the values.

For this problem, complete the definition of method numLessThan below so it returns the number of

items in the set whose value is less than the method’s argument n. You may define additional auxiliary
methods if you find them useful. The next page is blank to provide additional space for your answer if
needed. You may define as many additional simple variables as you wish, but no additional collections,
arrays, or tree nodes, and you may not make any changes to the tree itself.

For full credit, your solution must take advantage of the binary search tree organization and not
examine any more of the tree than necessary.

public class IntTreeSet {

 // tree nodes

 private class IntTreeNode {

 public int val; // data value in this node

 public IntTreeNode left; // left subtree with values < val

 public IntTreeNode right; // right subtree with values > val

 }

 // binary search tree storing contents of this IntTreeSet

 private IntTreeNode treeRoot;

 // construct new empty IntTreeSet

 public IntTreeSet() {

 treeRoot = null;

 }

 // code for other methods omitted to save space...

 // return number of items in this set with value < n

 public int numLessThan(int n) {

 return numLessThan(treeRoot, n);

 }

 // return number of nodes in tree with root r that have a value < n

 private int numLessThan(IntTreeNode r, int n) {

 if (r == null) {

 return 0;

 }

 if (r.val >= n) {

 // any values < n are in the left subtree only

 return numLessThan(r.left, n);

 } else {

 // r.val < n. Result is 1 (this node) + counts in subtrees

 return 1 + numLessThan(r.left, n) + numLessThan(r.right, n);

 }

 }

CSE 143 Final Part 1, August 18, 2011 Sample Solution

 Page 4 of 6

Question 4. (20 points) Collections. Complete the following method so it will scan a list of words, find
all of the words in that list that do not appear in a dictionary, and record how many times those words
not in the dictionary appear in the original list.

The input parameters to the method are a List (words) of strings and a Set (dictionary) of strings. The
method should return a Map containing <String,Integer> pairs, where the String in each pair is a word
that appears in the input list but not in the dictionary, and the associated integer is the number of times
the corresponding word appeared in the list. The entries in the resulting Map do not need to be sorted
in any particular order. You may create additional collections if you need them. String values must
match exactly to be considered to be the same: i.e., “foo”, “Foo”, “FOO” and “ FOO ” are all different.

 // Return a Map containing a list of <String,Integer> pairs where

 // each String is a String that appears in the List words but not

 // in the Set dictionary, and the associated Integer is the number

 // of times the word appears in the List words

 Map<String,Integer> countUnknownWords(List<String> words,

 Set<String> dictionary) {

 // allocate map to hold result frequencies

 Map<String,Integer> freq = new HashMap<String,Integer>();

 // process words in the dictionary

 for (String word: words) {

 if (!dictionary.contains(word)) {

 // input word is not in the dictionary. count it

 if (freq.containsKey(word)) { // or (freq.get(word)!=null)

 // increase count of existing word

 freq.put(word, freq.get(word)+1);

 } else {

 // add new word

 freq.put(word,1);

 }

 }

 }

 // return result map

 return freq;

 }

Notes: We accepted solutions that used for (i = ...) { ... get(i) ... } to access the
elements in words, even though this could be potentially expensive if get(i) is not a constant-time
operation for the particular List implementation used. The problem should have been worded to

disallow this, but since we missed that we did not deduct anything. Solutions that explicitly used
iterator hasNext() and next() methods were, of course, fine.

We also should have restricted the problem to limit the number of extra collections. The map used to
accumulate the result is necessary, but some solutions did things like allocate extra stacks and queues
and make copies of the entire input list, which is not needed. No points were deducted for solutions
that did this.

Any suitable Map implementation like HashMap or TreeMap could be used to accumulate the result.

CSE 143 Final Part 1, August 18, 2011 Sample Solution

 Page 5 of 6

Question 5. (16 points) Class design. For an address book application we have created the following
class to represent the name and address of each entry in the address book.

public class AddressCard implements Comparable<AddressCard> {

 // instance data

 private String firstName;

 private String lastName;

 private String city;

 private int zipCode;

 // Create new AddressCard with given data

 public AddressCard(String fn, String ln, String city, int zip) {

 firstName = fn; lastName = ln; this.city = city; zipCode = zip;

 }

 // add any additional code needed below

 // compare this AddressCard to other

 public int compareTo(AddressCard other) {

 int comp = this.lastName.compareTo(other.lastName);

 if (comp == 0) {

 comp = this.firstName.compareTo(other.firstName);

 }

 return comp;

 }

}

We would like to modify this class so we can compare one AddressCard object to another. If x and y
are AddressCard objects, then x.compareTo(y) should compare x to y and return an

appropriate integer depending on the ordering of x and y. AddressCards are ordered by their
lastName fields. If two cards have the same lastNames, then the firstNames are used to decide
the ordering. The lastName and firstName strings should be compared using their natural ordering
as Strings and should not be modified. In particular, two strings that are similar but differ only in
capitalization (“Abc” and “abc”) are not equal.

Make the necessary modifications and additions to the above class to allow AddressCard objects to
be compared.

Notes: The use of “this” in this.firstName and this.lastName is, of course, optional.

CSE 143 Final Part 1, August 18, 2011 Sample Solution

 Page 6 of 6

Question 6. (10 points) Abstract classes and interfaces. (Brief, to-the-point answers are appreciated)

In addition to regular classes, both abstract classes and interfaces can be used in Java programs to

define new types.

(a) Describe one advantage of defining a new type using an abstract class instead of an interface.

Abstract classes can contain implementations of some or all methods, which can then be inherited by

subclasses. Interfaces are pure type specifications and cannot include methods, so classes that

implement interfaces have to provide implementations for all of the methods specified in the

interface, or inherit suitable implementations from a superclass.

(b) Describe one advantage of defining a new type using an interface instead of an abstract class.

Classes can implement more than one interface, allowing a class to implement multiple types that are

not necessarily related by inheritance. Classes cannot inherit from more than one superclass,

whether or not it is abstract.

