
CSE 143
Lecture 7

Linked Lists and Loops

slides created by Ethan Apter
http://www.cs.washington.edu/143/

2

Review
• Recall the linked list containing 3, 7, and 12:
 data next data next data next

 front 3 7 12

• We can print all these elements without loops:
 // prints first three elements on separate lines
 System.out.println(front.data);
 System.out.println(front.next.data);
 System.out.println(front.next.next.data);

• But this is tedious, and we can’t process a list containing
thousands of nodes (reasonably)

3

Basics of Linked List Loops
• As a first attempt, let’s start with our only variable (front)

• How can we move front forward through the list?
 front = front.next;

• This code changes the list to look like this:
 data next data next data next

 front 3 7 12

4

Quick Aside: Drawings
• Some people prefer to draw:
 data next data next data next

 front 3 7 12

•  Like this instead:
 data next data next data next

 3 7 12

 front

• Both ways are equally correct

5

Basics of Linked List Loops
• So, we can move front forward through the list

• But how long do we move front forward?
–  until there is no more data!

• When are we out of data?
–  when front refers to no ListNode (null)

• Code to print all elements:
 while (front != null) {
 System.out.println(front.data);
 front = front.next; // moves front forward
 }

6

Basics of Linked List Loops
• But does this code work? Let’s follow it loop-by-loop:
 while (front != null) {
 System.out.println(front.data);
 front = front.next;
 }

 data next data next data next

 front 3 7 12

• Output:

7

Basics of Linked List Loops
• But does this code work? Let’s follow it loop-by-loop:
 while (front != null) {
 System.out.println(front.data);
 front = front.next;
 }

 data next data next data next

 front 3 7 12

• Output:
 3

8

Basics of Linked List Loops
• But does this code work? Let’s follow it loop-by-loop:
 while (front != null) {
 System.out.println(front.data);
 front = front.next;
 }

 data next data next data next

 front 3 7 12

• Output:
 3
 7

9

Basics of Linked List Loops
• But does this code work? Let’s follow it loop-by-loop:
 while (front != null) {
 System.out.println(front.data);
 front = front.next;
 }

 data next data next data next

 front 3 7 12

• Output:
 3
 7
 12

10

Basics of Linked List Loops
• But does this code work? Let’s follow it loop-by-loop:
 while (front != null) {
 System.out.println(front.data);
 front = front.next;
 }

 data next data next data next

 front 3 7 12

• Output:
 3
 7
 12

GARBAGE COLLECTED!

11

Temporary Variables
• Moving front through the list destroyed our list

• We need front to stay at the front
–  so it can keep track of all the nodes

• We can create a temporary variable to move through the list
–  now front can stay at the front
–  and we still have a variable to move through the list

12

Temporary Variables
• Creating a temporary variable:
 ListNode current = front;

• Which updates our picture to look like this:
 data next data next data next

 front 3 7 12

 current

• Notice that we created a new variable. We did not create
a new ListNode object.

13

Basics of Linked List Loops
•  Let’s update our code and follow it loop-by-loop:
 ListNode current = front;
 while (current != null) {
 System.out.println(current.data);
 current = current.next;
 }
 data next data next data next

 front 3 7 12

 current

• Output:

14

Basics of Linked List Loops
•  Let’s update our code and follow it loop-by-loop:
 ListNode current = front;
 while (current != null) {
 System.out.println(current.data);
 current = current.next;
 }

 data next data next data next

 front 3 7 12

 current

• Output:
 3

15

Basics of Linked List Loops
•  Let’s update our code and follow it loop-by-loop:
 ListNode current = front;
 while (current != null) {
 System.out.println(current.data);
 current = current.next;
 }

 data next data next data next

 front 3 7 12

 current

• Output:
 3
 7

16

Basics of Linked List Loops
•  Let’s update our code and follow it loop-by-loop:
 ListNode current = front;
 while (current != null) {
 System.out.println(current.data);
 current = current.next;
 }

 data next data next data next

 front 3 7 12

 current

• Output:
 3
 7
 12

17

Basics of Linked List Loops
•  Let’s update our code and follow it loop-by-loop:
 ListNode current = front;
 while (current != null) {
 System.out.println(current.data);
 current = current.next;
 }

 data next data next data next

 front 3 7 12

 current

• Output:
 3
 7
 12

It worked! We printed the
list and didn’t destroy it in
the process.

18

Relationship to Array Code
•  If we had written the same kind of code for arrays, it

would look like this:

 int i = 0;
 while (i < size) {
 System.out.println(elementData[i]);
 i++;
 }

19

Relationship to Array Code
• A table explaining this relationship:

• This may be helpful if you are comfortable with arrays

Description Array Code Linked List Code

go to front of list int i = 0; ListNode current = front;

test for more elements i < size current != null

get current value elementData[i] current.data

go to next element i++; current = current.next;

20

For Loops
• Of course, we usually write the array code in a for loop:

 for (int i = 0; i < size; i++) {
 System.out.println(elementData[i]);
 }

• And we can still do this with the linked list code:

 for (ListNode current = front; current != null;
current = current.next) {

 System.out.println(current.data);
 }

• But I prefer using while loops with linked lists
–  the choice is yours

21

LinkedIntList

• LinkedIntList will have the exact same functionality
as ArrayIntList:

 add(int value)
 add(int index, int value)
 get(int index)
 indexOf(int value)
 remove(int index)
 size()
 toString()

• But it will be implemented with a linked list instead of
with an array

22

LinkedIntList
• What data fields do we need?

–  at a bare minimum, we need the front of the list
–  we could also have others, like the size and the back of the list

• We’re going to choose the bare minimum

• Code:
 public class LinkedIntList {
 private ListNode front;

 ...
 }

23

ListNode Style: Recap
• Recall that our ListNode class has public fields

–  instead of private fields with public methods

• Normally this is bad style. However, the client does not
interact with our ListNode when using our LinkedIntList
–  they still get the nice interface of LinkedIntList’s methods

• So the client will never know the difference

•  If we really wanted to write ListNode correctly:
–  we’d make it a private static class inside LinkedIntList
–  but because we’re not really going to cover private static

inner classes in this course, we’ll keep ListNode as is

24

add

•  Let’s write the appending add method (add)

• To write add, we need to get to the end of our list

• Here’s a first attempt at getting to the end of our list:
 ListNode current = front;
 while (current != null) {
 current = current.next;
 }

• But what’s wrong with this?

25

add
• Suppose we originally had a list of 3, 7, and 12:

 data next data next data next

 front 3 7 12

• After executing our code, we’d have this situation:
 data next data next data next

 front 3 7 12

 current

26

add
• We can try initializing current to a new node:
 current = new ListNode(17);

• But this code leaves us with this situation:
 data next data next data next

 front 3 7 12

 current 17

• We have not added 17 to the end of our list
–  we’ve made a completely separate list instead!

27

IMPORTANT
• There are only two ways to change the structure of a

linked list:

1)  change the value of front
– this changes the starting point of the list
– example: front = null;

2)  change the value of <something>.next, where
<something> is a temporary variable that refers to a
node in the list

– this changes a link in the list
– example: current.next = null;

28

add

•  In our first attempt, we fell off the end of the list
–  we continued looping until current was null

• We need to stop at the last node
–  the last node’s next references null

•  Let’s update our test:
 ListNode current = front;
 while (current.next != null) {
 current = current.next;
 }

29

add

• This code leaves us with this situation:
 data next data next data next

 front 3 7 12

 current

• And now it’s easy to see that this next line of code:
 current.next = new ListNode(17);

• Correctly adds a new node to the list:
 data next data next data next

 front 3 7 12 17

 current

30

add

•  Let’s now wrap this code in an actual add method:

 public void add(int value) {
 ListNode current = front;
 while (current.next != null) {
 current = current.next;
 }
 current.next = new ListNode(value);
 }

• But what happens if we have an empty list?

31

NullPointerException

• When our list is empty, front is null

• Our code sets current to front (which is null) and
then asks for the value of current.next

• But current.next is the same as writing null.next

• What is the next field of null?
–  there isn’t one, because there’s no object!

• So Java throws a NullPointerException
–  you’ll see a lot of these as you write linked list code

32

add

• So we have to make adding the first element to our list
a special case:

 public void add(int value) {
 if (front == null) {
 front = new ListNode(value);
 } else {
 ListNode current = front;
 while (current.next != null) {
 current = current.next;
 }
 current.next = new ListNode(value);
 }
 }

• Usually, to change a linked list you’ll need at least two cases
–  one for changing the first element, and one for all the others

33

addSorted

•  Let’s try something harder: let’s write addSorted

• addSorted is just like the add method of SortedIntList:

 // pre : list is in sorted (non-decreasing) order
 // post: given value is inserted into list so as
 // to preserve sorted order
 public void addSorted(int value) {
 ...
 }

34

addSorted

• Assume we have a list containing 3, 7, and 12:
 data next data next data next

 front 3 7 12

•  Let’s try to write general code for adding a 10 to the list

• We need to stop one node early to change the link:
 ListNode current = front;
 while (current.next.data < value) {
 current = current.next;
 }

Continue looping until the
next value in the list is >= to
the value we want to insert

35

addSorted

• Now we need to insert our new node:
 current.next = new ListNode(value, current.next);

• Which modifies our list to look like this:
 data next data next data next data next

 front 3 7 10 12

 current

• Some people prefer to use a temporary variable when
inserting a new node into a list:

 ListNode temp = new ListNode(value, current.next);
 current.next = temp;

36

addSorted

• What if we try to use our code to add 13?

–  our loop test will continue forever!
–  or until current.next is null, which will make
current.next.data throw a NullPointerException

• We can modify our loop test to check for this:
 while (current.next != null && current.next.data < value)

• This works because the && operator short-circuits
–  this means if the first test is false, it won’t try the second test

• Notice that the order of the loop test is important!
–  we can’t switch the tests. Why not?

37

addSorted

• So we can update our addSorted code:
 public void addSorted(int value) {
 ListNode current = front;
 while (current.next != null && current.next.data < value) {
 current = current.next;
 }
 current.next = new ListNode(value, current.next);
 }

• And now we can successfully add 13 to the end:
 data next data next data next data next data next
 front 3 7 10 12 13

• What happens if we try to add a 0 to our list?

38

addSorted

•  If we try to add a 0, we add it in the wrong place:
 data next data next data next data next data next
 front 3 7 10 12 13

 data next
current 0

• We need special code to add an element at the front:
 front = new ListNode(value, front);

• And we need to know when to execute the above add code:
 if (value <= front.data) {
 // add at front
 }

39

addSorted

•  Let’s update our addSorted code:
 public void addSorted(int value) {
 if (value <= front.data) {
 front = new ListNode(value, front);
 } else {
 ListNode current = front;
 while (current.next != null && current.next.data < value) {
 current = current.next;
 }
 current.next = new ListNode(value, current.next);
 }
 }

• And now we can successfully add 0 to the front:
 data next data next data next data next data next data next
front 0 3 7 10 12 13

40

addSorted

• What happens if the list is empty when we call addSorted?

• When we have an empty list, front is null
–  our first line of code asks for front.data
–  NullPointerException!

• We need to update the first test to be more robust:
 if (front == null || value <= front.data)

•  Just like the && operator, the || operator also short-circuits
–  so, if front is null, we simply insert at the front
–  if front isn’t null, we still check front.data to decide if

we’re still going to insert at the front

41

addSorted

• The final, correct version of addSorted:
 public void addSorted(int value) {
 if (front == null || value <= front.data) {
 front = new ListNode(value, front);
 } else {
 ListNode current = front;
 while (current.next != null && current.next.data < value) {
 current = current.next;
 }
 current.next = new ListNode(value, current.next);
 }
 }

• That was surprisingly hard! It had four possible cases:
–  empty list
–  value <= [all values in list]
–  [some value in list] < value <= [some value in list]
–  value > [all values in list]

