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Intuition 

• Are the following operations “fast” or “slow”? 

behavior fast/slow 

add at front fast 

add at back slow 

get at index slow 

resizing fast 

binary search (really) slow 

behavior fast/slow 

add at front slow 

add at back fast 

get at index fast 

resizing slow 

binary search (pretty) fast 

array linked 
list 

stac
k 

queue 

behavior fast/slow 

push fast 

pop fast 

behavior fast/slow 

enqueue fast 

dequeue fast 
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Complexity 

• “Complexity” is a word that has a special meaning in   
computer science 

 

• complexity: the amount of computational resources a     
block of code requires in order to run 

 

• main computational resources: 

– time: how long the code takes to execute 

– space: how much computer memory the code consumes 

 

• Often, one of these resources can be traded for the other: 

– e.g.: we can make some code use less memory if we don’t    
mind that it will need more time to finish (and vice-versa) 
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Time Complexity 

• We usually care more about time complexity 

– we want to make our code run fast! 

 

• But we don’t merely measure how long a piece of code     
takes to determine it’s time complexity 

 

• That approach would have results strongly skewed by: 

– size/kind of input 

– speed of the computer’s hardware 

– other programs running at the same time 

– operating system 

– etc 

Ethan: “Sweet! My code ran 
             in 3.97 seconds!” 
 

Alyssa: “So what?” 
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Time Complexity 

• Instead, we care about the growth rate as the input size 
increase 

 

• First, we have to be able to measure the input size 

– the number of names to sort 

– the number of nodes in a linked list 

– the number of students in the IPL queue 

 

• We usually call the input size “n” 
 

• What happens if we double the input size (n  2n)? 

Ethan: “Aww man.  I doubled my input size, 
and now my code takes over a minute” 
 

Alyssa: “Haha, your code sucks” 
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Time Complexity 

• We can learn about this growth rate in two ways: 

– by examining code 

– by running the same code over different input sizes 

 

• Measuring the growth rate by is one of the few places      
where computer science is like the other sciences 

– here, we actually collect data 

 

• But this data can be misleading 

– modern computers are very complex 

– some features, like cache memory, interfere with our data 
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Time Complexity: Rule of Thumb 

• rule of thumb: this often works (but sometimes doesn’t) 
 

• rule of thumb for determining time complexity: 

– find the statement executed most often in the code 

– count how often it’s executed 

 

• But be careful how you count! 

– counting is hard  

– we have another course (CSE 321) that teaches counting 

 

• We’ll count most “simple” statements as 1 

– this includes i = i + 1, int x = elementData[i], etc 

– but not loops! (or methods that contain loops!) 
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Time Complexity: Rule of Thumb 

• Examples: 

 
      int x = 4 * 10 / 3 + 2 - 10 * 42; 

 

      for (int i = 0; i < 100; i++) { 

          x += i; 

      } 

 

      for (int i = 0; i < n; i++) { 

          for (int j = 0; j < n; j++) { 

              x += i + j; 

          } 

      } 

 

1 

100 

n2 

n2 + 100 + 1 
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Optimizing Code 

• Many programmers care a lot about efficiency 

 

• But many inexperienced programmers obsess about it 

– and the wrong kind of efficiency, at that 

 

• Which one is faster: 
      System.out.println(“print”); 

      System.out.println(“me”); 

   or: 
      System.out.println(“print\nme”); 

 

• If you’re going to optimize some code, improve it so that you 
get a real benefit! 

Who cares? They’re 
both about the same 
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Don Knuth says... 

Premature 
optimization 
is the root of 

all evil! 

Don Knuth 
• Professor Emeritus at Stanford 
• “Father” of algorithm analysis 
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Growth Rates 

• We care about n as it gets bigger 

– it’s a lot like calculus, with n approaching infinity 

• you all know calculus, right? 

 

• So, when we see something complicated like this: 

 

 
 

• We can remove all the annoying terms: 
 

 

 

 

• And as n gets really big, this approaches 0 



n3 18n2385n  708

0.005n4 13n2 73842



n 3

n 4
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Big O Notation 

• We need a way to write a growth rate of a block of code 

 

• Computer scientists use big O (“big oh”) notation 

– O(n) 

– O(n2) 

 

• In big O notation, we ignore coefficients that are constants 

– 5n is written as O(n) 

– 100n is also written as O(n) 

– 0.05n2 is written as O(n2) and will eventually outgrow O(n) 

 

• Each O([something]) specifies a different complexity class 
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Complexity Classes 

Complexit
y Class 

Name Example 

O(1) constant time popping a stack 

O(log n) logarithmic time binary search on an array 

O(n) linear time scanning all elements of an array 

O(n log n) log-linear time binary search on a linked list and 
good sorting algorithms 

O(n2) quadratic time poor sorting algorithms (like 
inserting n items into 
SortedIntList) 

O(n3) cubic time (example later today) 

O(2n) exponential time Really hard problems.  These grow 
so fast that they’re impractical 
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• From Reges/Stepp, page 708: 

• assume that all complexity classes can process an input             
of size 100 in 100ms 

 

Examples of Each Complexity 
Class’s Growth Rate 

Input 
Size 
(n) 

O(1) O(log n) O(n) O(n log n) O(n2) O(n3) O(2n) 

100 100ms 100ms 100ms 100ms 100ms 100ms 100ms 

200 100ms 115ms 200ms 240ms 400ms 800ms 32.7 sec 

400 100ms 130ms 400ms 550ms 1.6 sec 6.4 sec 12.4 days 

800 100ms 145ms 800ms 1.2 sec 6.4 sec 51.2 sec 36.5 million 
years 

1600 100ms 160ms 1.6 sec 2.7 sec 25.6 sec 6 min 
49.6 sec 

4.21 * 1024 
years 

3200 100ms 175ms 3.2 sec 6 sec 1 min 
42.4 sec 

54 min 
36 sec 

5.6 * 1061 
years 
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Case Study: maxSum 

• Given an array of ints, find the subsequence with the  

maximum sum 

 

• Additional information: 

– values in the array can be negative, positive, or zero 

– the subsequence must be contiguous (can’t skip elements) 

– you must compute: 

• the value of the sum of this subsequence 

• the starting index (inclusive) of this subsequence 

• the stopping index (inclusive) of this subsequence 

 

• This has been used as a Microsoft interview question! 
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Case Study: maxSum 

• For example: suppose you were given the following array: 
           0   1    2    3   4    5   6    7    8   9 
 

          14    8  -23   4   6   10   -18  5    5   11 

 

 

 

    max sum: 4 + 6 + 10 + -18 + 5 + 5 + 11 = 23 

    starting index: 3 

    stopping index: 9 

 

• Notice that we included a negative number (-18)! 

– but this also let us include the 4, 6, and 10 

max subsequence 
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Case Study: maxSum 

• First, a simple way to solve this: try every subsequence! 

 

• Psuedo-code: 
      // try every start index, from 0 to size - 1 

          // try every stop index, from start index to size - 1 

              // compute the sum from start index to stop index 

 

• Converted to be part code, part pseudo-code: 
      for (int start = 0; start < list.length; start++) { 

          for (int stop = start; stop < list.length; stop++) { 

              // compute the sum from start index to stop index 

          } 

      } 
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Case Study: maxSum 

• Now, we just need to convert this pseudo-code: 

      // compute the sum from start index to stop 

index 

 

• ...into code.  Here’s one way: 

      int sum = 0; 

      for (int i = start; i <= stop; i++) { 

          sum += list[i]; 

      } 

 

• And we need to store this sum if it becomes our max sum: 

      if (sum > maxSum) { 

          maxSum = sum; 

      } 
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Case Study: maxSum 

• Here’s our whole algorithm, with some initialization: 
      int maxSum = list[0]; 

      int maxStart = 0; 

      int maxStop = 0; 

      for (int start = 0; start < list.length; start++) { 

          for (int stop = start; stop < list.length; 

stop++) { 

              int sum = 0; 

              for (int i = start; i <= stop; i++) { 

                  sum += list[i]; 

              } 

              if (sum > maxSum) { 

                  maxSum = sum; 

                  maxStart = start; 

                  maxStop = stop; 

              } 

          } 

      } 

this is the most 
frequently executed 
line of code 
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Case Study: maxSum 

• What complexity class is the previous algorithm? 

– O(n3) (cubic time) 

 

• This is pretty slow 

– we recalculate the entire sum every time: 

• calculate the entire sum from index 0 to index 0 

• calculate the entire sum from index 0 to index 1 

• ... 

• calculate the entire sum from index 0 to index 998 

• calculate the entire sum from index 0 to index 999 

 

•  How can we improve it? 

– remember the old sum (values list[start] to list[stop-1]) 

– add the single new value (list[stop]) to the old sum 
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Case Study: maxSum 

• Improved code, now with a running sum: 
      int maxSum = list[0]; 

      int maxStart = 0; 

      int maxStop = 0; 

      for (int start = 0; start < list.length; start++) { 

          int sum = 0; 

          for (int stop = start; stop < list.length; 

stop++) { 

              sum += list[stop]; 

              if (sum > maxSum) { 

                  maxSum = sum; 

                  maxStart = start; 

                  maxStop = stop; 

              } 

          } 

      } 

these are the most 
frequently executed 
lines of code 
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Case Study: maxSum 

• What complexity class is the previous algorithm? 

– O(n2) (quadratic time) 

 

• This is a big improvement over the old code 

– it now runs much faster for large input sizes 

 

• And it wasn’t that hard to convert our first version to this 
improved version 

 

• But we can still do better 

– if only we can figure out how... 
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Case Study: maxSum 

• There is a better algorithm, but it’s harder to understand 

– and I’m not going to formally prove that it always works 

 

• The main idea is that we will find the max subsequence 
without computing all the sums 

– this will eliminate our inner for loop 

– ...which means we can find the subsequence with just a single 
loop over the array 

 

• We need to know when to reset our running sum 

– this will “throw out” all previous values 

– but we have to know for sure that we don’t want them! 
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Case Study: maxSum 

• Suppose we’re about to look at an index greater than 0 

– for example index 10 

 

• If we’re going to include previous values, we must include    
the value at the index 9 

– index 9 is immediately before index 10 

 

• We want to use only the best subsequence that ends at 9 

 

• And only if it helps us.  When does it help? 

– it helps when the sum of this old subsequence is positive 

– and hurts when the sum of this old subsequence is negative 
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Case Study: maxSum 

• Best code: 
      int maxSum = list[0]; 

      int maxStart = 0; 

      int maxStop = 0; 

      int sum = 0; 

      int start = 0; 

      for (int i = 0; i < list.length; i++) { 

          if (sum < 0) { 

              sum = 0; 

              start = i; 

          } 

          sum += list[i]; 

          if (sum > maxSum) { 

              maxSum = sum; 

              maxStart = start; 

              maxStop = i; 

          } 

      } 

these are the most 
frequently executed 
lines of code 
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Case Study: maxSum 

• What complexity class is our best algorithm? 

– O(n) (linear time) 

 

• This is again a big improvement over both other versions 

 

• But let’s not just take my word for it 

 

• Let’s conduct an experiment (in MaxSum.java -- available      
on the website) 

– we’ll give an array of ints of some size to each algorithm 

– ...and then give the algorithm an array of twice that size 

– ...and then give the algorithm an array of triple that size 

– ...and see how long it takes 



27 

MaxSum.java 

• Output for an array of 1500 ints in the O(n3) algorithm: 
      How many numbers do you want to use? 1500 

    Which algorithm do you want to use? 1 

    Max = 172769 

    Max start = 677 

    Max stop = 971 

    for n = 1500, time = 0.96 

 

    Max = 198959 

    Max start = 1727 

    Max stop = 1972 

    for n = 3000, time = 7.543 

 

    Max = 614711 

    Max start = 251 

    Max stop = 3870 

    for n = 4500, time = 25.427 

 

    Double/single ratio = 7.857291666666667 

    Triple/single ratio = 26.486458333333335 

these numbers are close to 8 
(23) and 27 (33) respectively, 
so this algorithm exhibited 
O(n3) growth 
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MaxSum.java 

• Output for an array of 30,000 ints in the O(n2) algorithm: 
      How many numbers do you want to use? 30000 

    Which algorithm do you want to use? 2 

    Max = 809852 

    Max start = 10146 

    Max stop = 19139 

    for n = 30000, time = 0.988 

 

    Max = 2170008 

    Max start = 9832 

    Max stop = 25833 

    for n = 60000, time = 3.935 

 

    Max = 4112483 

    Max start = 74 

    Max stop = 88871 

    for n = 90000, time = 8.853 

 

    Double/single ratio = 3.9827935222672064 

    Triple/single ratio = 8.960526315789474 

these numbers are close to 4 
(22) and 9 (32) respectively, 
so this algorithm exhibited 
O(n2) growth 
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MaxSum.java 

• Output for an array of 5,000,000 ints in the O(n) algorithm: 
      How many numbers do you want to use? 5000000 

    Which algorithm do you want to use? 3 

    Max = 22760638 

    Max start = 456 

    Max stop = 4998134 

    for n = 5000000, time = 0.016 

 

    Max = 27670910 

    Max start = 1045808 

      Max stop = 9643590 

    for n = 10000000, time = 0.031 

 

    Max = 28178549 

    Max start = 239081 

    Max stop = 8574748 

    for n = 15000000, time = 0.044 

 

    Double/single ratio = 1.9375 

    Triple/single ratio = 2.75 

these numbers are close to 
2 and 3 respectively, so this 
algorithm exhibited O(n) 
growth 

look at how fast 
it processed 
5,000,000, 
10,000,000, and 
15,000,000 
ints! 


