
CSE 143
Lecture 8

Complexity

slides created by Ethan Apter

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Intuition

• Are the following operations “fast” or “slow”?

behavior fast/slow

add at front fast

add at back slow

get at index slow

resizing fast

binary search (really) slow

behavior fast/slow

add at front slow

add at back fast

get at index fast

resizing slow

binary search (pretty) fast

array linked
list

stac
k

queue

behavior fast/slow

push fast

pop fast

behavior fast/slow

enqueue fast

dequeue fast

3

Complexity

• “Complexity” is a word that has a special meaning in
computer science

• complexity: the amount of computational resources a
block of code requires in order to run

• main computational resources:

– time: how long the code takes to execute

– space: how much computer memory the code consumes

• Often, one of these resources can be traded for the other:

– e.g.: we can make some code use less memory if we don’t
mind that it will need more time to finish (and vice-versa)

4

Time Complexity

• We usually care more about time complexity

– we want to make our code run fast!

• But we don’t merely measure how long a piece of code
takes to determine it’s time complexity

• That approach would have results strongly skewed by:

– size/kind of input

– speed of the computer’s hardware

– other programs running at the same time

– operating system

– etc

Ethan: “Sweet! My code ran
 in 3.97 seconds!”

Alyssa: “So what?”

5

Time Complexity

• Instead, we care about the growth rate as the input size
increase

• First, we have to be able to measure the input size

– the number of names to sort

– the number of nodes in a linked list

– the number of students in the IPL queue

• We usually call the input size “n”

• What happens if we double the input size (n 2n)?

Ethan: “Aww man. I doubled my input size,
and now my code takes over a minute”

Alyssa: “Haha, your code sucks”

6

Time Complexity

• We can learn about this growth rate in two ways:

– by examining code

– by running the same code over different input sizes

• Measuring the growth rate by is one of the few places
where computer science is like the other sciences

– here, we actually collect data

• But this data can be misleading

– modern computers are very complex

– some features, like cache memory, interfere with our data

7

Time Complexity: Rule of Thumb

• rule of thumb: this often works (but sometimes doesn’t)

• rule of thumb for determining time complexity:

– find the statement executed most often in the code

– count how often it’s executed

• But be careful how you count!

– counting is hard

– we have another course (CSE 321) that teaches counting

• We’ll count most “simple” statements as 1

– this includes i = i + 1, int x = elementData[i], etc

– but not loops! (or methods that contain loops!)

8

Time Complexity: Rule of Thumb

• Examples:

 int x = 4 * 10 / 3 + 2 - 10 * 42;

 for (int i = 0; i < 100; i++) {

 x += i;

 }

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 x += i + j;

 }

 }

1

100

n2

n2 + 100 + 1

9

Optimizing Code

• Many programmers care a lot about efficiency

• But many inexperienced programmers obsess about it

– and the wrong kind of efficiency, at that

• Which one is faster:
 System.out.println(“print”);

 System.out.println(“me”);

 or:
 System.out.println(“print\nme”);

• If you’re going to optimize some code, improve it so that you
get a real benefit!

Who cares? They’re
both about the same

10

Don Knuth says...

Premature
optimization
is the root of

all evil!

Don Knuth
• Professor Emeritus at Stanford
• “Father” of algorithm analysis

11

Growth Rates

• We care about n as it gets bigger

– it’s a lot like calculus, with n approaching infinity

• you all know calculus, right?

• So, when we see something complicated like this:

• We can remove all the annoying terms:

• And as n gets really big, this approaches 0

n3 18n2385n 708

0.005n4 13n2 73842

n 3

n 4

12

Big O Notation

• We need a way to write a growth rate of a block of code

• Computer scientists use big O (“big oh”) notation

– O(n)

– O(n2)

• In big O notation, we ignore coefficients that are constants

– 5n is written as O(n)

– 100n is also written as O(n)

– 0.05n2 is written as O(n2) and will eventually outgrow O(n)

• Each O([something]) specifies a different complexity class

13

Complexity Classes

Complexit
y Class

Name Example

O(1) constant time popping a stack

O(log n) logarithmic time binary search on an array

O(n) linear time scanning all elements of an array

O(n log n) log-linear time binary search on a linked list and
good sorting algorithms

O(n2) quadratic time poor sorting algorithms (like
inserting n items into
SortedIntList)

O(n3) cubic time (example later today)

O(2n) exponential time Really hard problems. These grow
so fast that they’re impractical

14

• From Reges/Stepp, page 708:

• assume that all complexity classes can process an input
of size 100 in 100ms

Examples of Each Complexity
Class’s Growth Rate

Input
Size
(n)

O(1) O(log n) O(n) O(n log n) O(n2) O(n3) O(2n)

100 100ms 100ms 100ms 100ms 100ms 100ms 100ms

200 100ms 115ms 200ms 240ms 400ms 800ms 32.7 sec

400 100ms 130ms 400ms 550ms 1.6 sec 6.4 sec 12.4 days

800 100ms 145ms 800ms 1.2 sec 6.4 sec 51.2 sec 36.5 million
years

1600 100ms 160ms 1.6 sec 2.7 sec 25.6 sec 6 min
49.6 sec

4.21 * 1024
years

3200 100ms 175ms 3.2 sec 6 sec 1 min
42.4 sec

54 min
36 sec

5.6 * 1061
years

15

Case Study: maxSum

• Given an array of ints, find the subsequence with the

maximum sum

• Additional information:

– values in the array can be negative, positive, or zero

– the subsequence must be contiguous (can’t skip elements)

– you must compute:

• the value of the sum of this subsequence

• the starting index (inclusive) of this subsequence

• the stopping index (inclusive) of this subsequence

• This has been used as a Microsoft interview question!

16

Case Study: maxSum

• For example: suppose you were given the following array:
 0 1 2 3 4 5 6 7 8 9

 14 8 -23 4 6 10 -18 5 5 11

 max sum: 4 + 6 + 10 + -18 + 5 + 5 + 11 = 23

 starting index: 3

 stopping index: 9

• Notice that we included a negative number (-18)!

– but this also let us include the 4, 6, and 10

max subsequence

17

Case Study: maxSum

• First, a simple way to solve this: try every subsequence!

• Psuedo-code:
 // try every start index, from 0 to size - 1

 // try every stop index, from start index to size - 1

 // compute the sum from start index to stop index

• Converted to be part code, part pseudo-code:
 for (int start = 0; start < list.length; start++) {

 for (int stop = start; stop < list.length; stop++) {

 // compute the sum from start index to stop index

 }

 }

18

Case Study: maxSum

• Now, we just need to convert this pseudo-code:

 // compute the sum from start index to stop

index

• ...into code. Here’s one way:

 int sum = 0;

 for (int i = start; i <= stop; i++) {

 sum += list[i];

 }

• And we need to store this sum if it becomes our max sum:

 if (sum > maxSum) {

 maxSum = sum;

 }

19

Case Study: maxSum

• Here’s our whole algorithm, with some initialization:
 int maxSum = list[0];

 int maxStart = 0;

 int maxStop = 0;

 for (int start = 0; start < list.length; start++) {

 for (int stop = start; stop < list.length;

stop++) {

 int sum = 0;

 for (int i = start; i <= stop; i++) {

 sum += list[i];

 }

 if (sum > maxSum) {

 maxSum = sum;

 maxStart = start;

 maxStop = stop;

 }

 }

 }

this is the most
frequently executed
line of code

20

Case Study: maxSum

• What complexity class is the previous algorithm?

– O(n3) (cubic time)

• This is pretty slow

– we recalculate the entire sum every time:

• calculate the entire sum from index 0 to index 0

• calculate the entire sum from index 0 to index 1

• ...

• calculate the entire sum from index 0 to index 998

• calculate the entire sum from index 0 to index 999

• How can we improve it?

– remember the old sum (values list[start] to list[stop-1])

– add the single new value (list[stop]) to the old sum

21

Case Study: maxSum

• Improved code, now with a running sum:
 int maxSum = list[0];

 int maxStart = 0;

 int maxStop = 0;

 for (int start = 0; start < list.length; start++) {

 int sum = 0;

 for (int stop = start; stop < list.length;

stop++) {

 sum += list[stop];

 if (sum > maxSum) {

 maxSum = sum;

 maxStart = start;

 maxStop = stop;

 }

 }

 }

these are the most
frequently executed
lines of code

22

Case Study: maxSum

• What complexity class is the previous algorithm?

– O(n2) (quadratic time)

• This is a big improvement over the old code

– it now runs much faster for large input sizes

• And it wasn’t that hard to convert our first version to this
improved version

• But we can still do better

– if only we can figure out how...

23

Case Study: maxSum

• There is a better algorithm, but it’s harder to understand

– and I’m not going to formally prove that it always works

• The main idea is that we will find the max subsequence
without computing all the sums

– this will eliminate our inner for loop

– ...which means we can find the subsequence with just a single
loop over the array

• We need to know when to reset our running sum

– this will “throw out” all previous values

– but we have to know for sure that we don’t want them!

24

Case Study: maxSum

• Suppose we’re about to look at an index greater than 0

– for example index 10

• If we’re going to include previous values, we must include
the value at the index 9

– index 9 is immediately before index 10

• We want to use only the best subsequence that ends at 9

• And only if it helps us. When does it help?

– it helps when the sum of this old subsequence is positive

– and hurts when the sum of this old subsequence is negative

25

Case Study: maxSum

• Best code:
 int maxSum = list[0];

 int maxStart = 0;

 int maxStop = 0;

 int sum = 0;

 int start = 0;

 for (int i = 0; i < list.length; i++) {

 if (sum < 0) {

 sum = 0;

 start = i;

 }

 sum += list[i];

 if (sum > maxSum) {

 maxSum = sum;

 maxStart = start;

 maxStop = i;

 }

 }

these are the most
frequently executed
lines of code

26

Case Study: maxSum

• What complexity class is our best algorithm?

– O(n) (linear time)

• This is again a big improvement over both other versions

• But let’s not just take my word for it

• Let’s conduct an experiment (in MaxSum.java -- available
on the website)

– we’ll give an array of ints of some size to each algorithm

– ...and then give the algorithm an array of twice that size

– ...and then give the algorithm an array of triple that size

– ...and see how long it takes

27

MaxSum.java

• Output for an array of 1500 ints in the O(n3) algorithm:
 How many numbers do you want to use? 1500

 Which algorithm do you want to use? 1

 Max = 172769

 Max start = 677

 Max stop = 971

 for n = 1500, time = 0.96

 Max = 198959

 Max start = 1727

 Max stop = 1972

 for n = 3000, time = 7.543

 Max = 614711

 Max start = 251

 Max stop = 3870

 for n = 4500, time = 25.427

 Double/single ratio = 7.857291666666667

 Triple/single ratio = 26.486458333333335

these numbers are close to 8
(23) and 27 (33) respectively,
so this algorithm exhibited
O(n3) growth

28

MaxSum.java

• Output for an array of 30,000 ints in the O(n2) algorithm:
 How many numbers do you want to use? 30000

 Which algorithm do you want to use? 2

 Max = 809852

 Max start = 10146

 Max stop = 19139

 for n = 30000, time = 0.988

 Max = 2170008

 Max start = 9832

 Max stop = 25833

 for n = 60000, time = 3.935

 Max = 4112483

 Max start = 74

 Max stop = 88871

 for n = 90000, time = 8.853

 Double/single ratio = 3.9827935222672064

 Triple/single ratio = 8.960526315789474

these numbers are close to 4
(22) and 9 (32) respectively,
so this algorithm exhibited
O(n2) growth

29

MaxSum.java

• Output for an array of 5,000,000 ints in the O(n) algorithm:
 How many numbers do you want to use? 5000000

 Which algorithm do you want to use? 3

 Max = 22760638

 Max start = 456

 Max stop = 4998134

 for n = 5000000, time = 0.016

 Max = 27670910

 Max start = 1045808

 Max stop = 9643590

 for n = 10000000, time = 0.031

 Max = 28178549

 Max start = 239081

 Max stop = 8574748

 for n = 15000000, time = 0.044

 Double/single ratio = 1.9375

 Triple/single ratio = 2.75

these numbers are close to
2 and 3 respectively, so this
algorithm exhibited O(n)
growth

look at how fast
it processed
5,000,000,
10,000,000, and
15,000,000
ints!

