
CSE 143
Lecture 9

Recursion

slides created by Alyssa Harding

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Recursion

• Iteration: a programming technique in which you describe
actions to be repeated using a loop

• Recursion: a programming technique in which you describe

actions to be repeated using a method that calls itself

• Both approaches can be used to solve many of the same
problems

– Some problems are easier solved iteratively

– Some problems are easier solved recursively

3

Example: row

• Imagine that you’re a robot and I ask you which row you’re
sitting in:

• So far, you’re programmed to take an iterative approach

int count = 0;

while (moreRowsLeft()) {

count++;

}

4

Example: row

• What if you’re a robot who can’t see well?

What row AM I in?
…Do more rows exist?
…Do I exist?
…What is the meaning of life?

5

Example: row

• What if you’re have a room full of other robots?

• You can ask them questions to help solve your problem!

• …but not that question! We need to make progress each time

What row
is he in?

What row
am I in? What row

is he in?

6

Example: row

• We can ask what row they are in to figure out our own row:

What row
are you in?
…ok, I’m

row 3!

I’m in the
front, so
row 1!

What row
are you in?
…ok, I’m

row 2!

7

Case analysis

• Iteratively, we think of the loop bounds

• Recursively, we think of the cases

• Base case:

– Easiest, simplest case where we know exactly what work to do

– Example: “If I’m in the front row, I’m in row 1.”

• Recursive case:

– We do a little bit of work and ask someone else a simpler version
of the same question

– Example: “Otherwise, I ask the person in front of me what row
they are in and add 1!”

8

Case analysis

• Key questions to ask:

• Identifying the base case:

– What is the easiest case?

– When do I know that I’m done?

• Working out the recursive case:

– What’s a small bit of work that I can do?

– What progress can I make towards my goal?

– Is there a repeated pattern?

9

Example: stairs

• You want to walk down a flight of stairs.

• Iterative approach:

“Let me count the number of stairs there are,

and then take that that many steps!”

1

3

2

10

Example: stairs

• You want to walk down a flight of stairs.

• Recursive approach:

“If I’m at the bottom, I stop.

Otherwise, I take a step down and repeat.”

step and repeat…

step and repeat…

step and repeat…

stop!

11

Example: writeStars

• Here’s an iterative approach to making a method that writes
out n stars:

public static void writeStars(int n) {

for (int i = 0; i < n; i++)

System.out.print("*");

System.out.println();

}

12

Example: writeStars

• Let’s transform it to be recursive!

• What is the base case?

public static void writeStars2(int n) {

if (n == 1) {

System.out.println(“*”);

} else {

...

}

}

Printing 1 star is easy,
but printing 0 is even easier!

13

Example: writeStars

• Let’s transform it to be recursive!

• What is the base case?

public static void writeStars2(int n) {

if (n == 0) {

System.out.println();

} else {

...

}

}

Here’s our simplest base case.

14

Example: writeStars

• Let’s transform it to be recursive!

• What is the recursive case?

public static void writeStars2(int n) {

if (n == 0) {

System.out.println();

} else {

for (int i = 0; i < n; i++) {

System.out.println(“*”);

}

}

}

We’re a lazy robot! We just want to
make a small amount of progress.

15

Example: writeStars

• Let’s transform it to be recursive!

• What is the recursive case?

public static void writeStars2(int n) {

if (n == 0) {

System.out.println();

} else {

System.out.println(“*”);

writeStars2(n – 1);

}

}

We make a little progress…

We ask another robot to do the rest.
We have to trust that we’re writing the method well!

16

Example: writeStars

• We can trace its progress as it goes:

writeStars2(3)

System.out.print(“*”)

writeStars2(2)

System.out.print(“*”)

writeStars2(1)

System.out.print(“*”)

writeStars2(0)

System.out.println()

17

Example: reverse

• Now we’ll look at a problem that’s hard to solve iteratively, but
easier with recursion

• Given a Scanner as input, print the lines in reverse

• How would you solve this iteratively?

– Loop while there are more lines

– Requires additional storage, like a List or a Stack

18

Example: reverse

• Writing reverse recursively:

• What is the base case?

public static void reverse(Scanner input) {

// base case: no more lines

if (!input.hasNextLine()) {

// do nothing

} else {

…

}

}

This is a good base case,
but we don’t need to

do anything in this case

19

Example: reverse

• Writing reverse recursively:

• What is the base case?

public static void reverse(Scanner input) {

// base case: no more lines

// recursive case

if (input.hasNextLine()) {

…

}

}

It’s better style not to have
an empty if statement.

20

Example: reverse

• Writing reverse recursively:

• What is the recursive case’s work?

public static void reverse(Scanner input) {

// base case: no more lines

// recursive case

if (input.hasNextLine()) {

String line = input.nextLine();

// reverse the rest of the input

System.out.println(line);

}

}
We made a little progress, how do we do the rest?

21

Example: reverse

• Writing reverse recursively:

• What is the recursive case’s work?

public static void reverse(Scanner input) {

// base case: no more lines

// recursive case

if (input.hasNextLine()) {

String line = input.nextLine();

reverse(input);

System.out.println(line);

}

}
We recursively call the method with the easier problem!

22

public static void main (String[] args) {

Scanner input =

new Scanner(new File("recursion.txt"));

reverse(input);

}

public static void reverse(Scanner input) {

if (input.hasNextLine()) {

String line = input.nextLine(); // student

reverse(input);

System.out.println(line);

}

}

Example: reverse

Output:
recursion

loves

that

student

public static void reverse(Scanner input) {

if (input.hasNextLine()) {

String line = input.nextLine(); // that

reverse(input);

System.out.println(line);

}

}

public static void reverse(Scanner input) {

if (input.hasNextLine()) {

String line = input.nextLine(); // loves

reverse(input);

System.out.println(line);

}

}

Input:
student

that

loves

recursion

public static void reverse(Scanner input) {

if (input.hasNextLine()) {

String line = input.nextLine(); // recursion

reverse(input);

System.out.println(line);

}

}

public static void reverse(Scanner input) {

if (input.hasNextLine()) { // false!

String line = input.nextLine();

reverse(input);

System.out.println(line);

}

}

23

Example: stutter

• Our favorite problem: stutter!

• Given an int as input, stutter the digits

– Example: stutter(348) returns 334488

• So far we’ve only printed inside of our recursive methods,

but we can return values as well

24

Example: stutter

• What is the base case?

public static int stutter(int n) {

if (n < 10) {

return n*11;

} else {

...

}

}

Any single digit number can be stuttered easily.

25

Example: stutter

• What is the recursive case?

public static int stutter(int n) {

if (n < 10) {

return n*11;

} else {

...

}

}

We can make a smaller problem by
breaking the number down:

n = 348 n/10 -> 34

n%10 -> 8

and recurse by stuttering both parts:

stutter(n/10) -> 3344

stutter(n%10) -> 88

26

Example: stutter

• What is the recursive case?

public static int stutter(int n) {

if (n < 10) {

return n*11;

} else {

return stutter(n/10)*100 + stutter(n%10);

}

}
To put them back into one number, we can’t just

add. We need to shift the first digits to the right:

stutter(n/10)*100 + stutter(n%10)

3344*100 + 88

27

Example: stutter

• What about negative numbers?

public static int stutter(int n) {

if (n < 0) {

return –stutter(-n);

} else if (n < 10) {

return n*11;

} else {

return stutter(n/10)*100 + stutter(n%10);

}

} We deal with them first and
trust the recursion to take care of the rest.

