CSE 143
Lecture 11

Maps
Grammars

slides created by Alyssa Harding
http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

Example: studentGrades

o Let’s pretend it's midterm time and
all the TAs are tired of grading

e We decide to randomly generate grades for all our students!

// generate random grade between 0 and 99
// so that no one aces the test
Random r = new Random() ;

int grade = r.nextInt(100);

e ...I promise this won't really happen

Example: studentGrades

e But this gets tiring too
e We don't want to hand generate a grade for each student

o If we have a list of all of our students, we could write a
program to loop through them and assign them grades
List<String> students =
new ArrayList<String>() ;
students.add ("Joe") ;
students.add ("Sally") ;
students.add ("Mike") ;

Example: studentGrades

e But we need a way to keep track of which grade
goes with which student

0 1 2
students Joe Sally Mike
grades 32 87 51

e We could keep another list of all the grades
— Student at index 0 has grade at index 0, and so on
— But that’s tedious

e Solution: maps allow us to associate key/value pairs
— For example, a student name with a grade

student names grades

e Also known as a dictionary, associative array, hash

— Can think of it as an array where you can have indexes
of any type of Object instead of just ints

e Java’s Map<K, V> interface that uses generic key/value types

// adds a mapping from the given key to the given value
void put (K key, V value)

// returns the value mapped to the given key (null if none)
V get (K key)

// returns true if the map contains a mapping for the given key
boolean containsKey (K key)

// returns a Set of all keys in the map
Set<K> keySet ()

// removes any existing mapping for the given key

remove (K key)

e We will use two implementations of the Map interface:

» TreeMap.

— provides O(log(n)) access to elements
— stores keys in sorted order

« HashMap.:
— provides O(1) access to elements

— stores keys in unpredictable order

e The SortedMap interface is also implemented by TreeMap

Example: studentGrades

e Using this, can solve our problem of grading by making a map:

Map<String, Integer> studentGrades =
new HashMap<String, Integer>();

e And storing the grades in it:

Random r = new Random() ;

for (String name : students) {
int grade = r.nextInt(100);
studentGrades.put (name, grade);

Example: studentGrades

e How can we see the grades?

e We can get a set of all the keys
— we don't know anything about a set
— but it's Iterable so we can use a foreach loop

for (String name : studentGrades.keySet()) {
System.out.println(name + " " +
studentGrades.get (name)) ;

Example: wordCount

e Let’s try a tougher problem now

e Given some text file, we want to count how many times each
word occurs

// open the file
Scanner console = new Scanner (System.in) ;

System.out.print ("What is the name of the text file?
");
String fileName = console.nextLine() ;

Scanner input = new Scanner (new File(fileName)) ;

10

Example: wordCount

e Make a SsortedMap to hold the words and their counts:

SortedMap<String, Integer> wordCounts =
new TreeMap<String, Integer>() ;

11

Example: wordCount

e Put the words into the map:

while (input.hasNext()) ({
String next = input.next () .tolLowerCase() ;
wordCounts.put(next, 1);

But what if the word is already in the map?
This would always keep its count at 1.

12

Example: wordCount

e Instead, we test whether it was there, and if so, increment it:

while (input.hasNext()) {
String next = input.next () .tolLowerCase() ;
if (!wordCounts.containsKey (next)) {
wordCounts.put (next, 1);
} else {
wordCounts.put (next,
wordCounts.get (next) + 1);

}
} Note that each key can only map to one value. When we

put a key in multiple times, only the last value is recorded

13

Example: wordCount

e We can also print out all the word counts:

for (String word : wordCounts.keySet()) {
int count = wordCounts.get (word) ;
System.out.println (count + "\t" + word);

Note that the keys (the words) occur in sorted order
because we are using a SortedMap.

14

e Grammar:
A description of a language that describes which
sequences of symbols are allowed in that language.

e Grammars describe syntax (rules), not semantics (meaning)

e We will use them to produce syntactically correct sentences

15

e Use simplified Backus-Naur Form (BNF) for describing
language:

<symbol> : <expression> | <expression> |
° A\ /4

:" ' means “is composed of”

° \\|II means “Or”

16

e We can describe the basic structure of an English sentence as
follows:

<s>:<np> <vp>

e "A sentence (<s>) is composed of a noun phrase (<np>)
followed by a verb phrase (<vp>)."

17

e We can break down the <np> further into proper nouns:
<np>:<pn>
<pn>:John|Jane|Sally|Spot|Fred|Elmo

e The vertical bar (*|”) means that the a <pn>
can be “John” OR “Jane” OR “Sally” OR ...

18

e Nonterminals:
- <s>, <np>, <pn>, and <vp>
— we don't expect them to appear in an actual English sentence
— they are placeholders on the left side of rules

e Terminals:
— “John”, “Jane”, and “Sally”
— they can appear in sentences
— they are final productions on the right side of rules

19

e We also need a verb phrase rule, <vp>:
<vp>:<tv> <np>|<iv>
<tv>:hit|honored|kissed|helped
<iv>:died|collapsed|laughed|wept

20

e We can expand the <np> rule so that we can have more
complex noun phrases:

<np>:<dp> <adjp> <n>|<pn>
<pn>:John|Jane|Sally|Spot|Fred|Elmo

<dp>:the|a
<n>:dog|cat|man|university| father |mother|child

21

e We could just make an <adj> rule:
<adj>:big| fat|green|wonderful | faulty

e But we want to have multiple adjectives:
<adjp>:<adj>|<adj> <adj>|<adj> <adj> <adj>..

e We can use recursion to generate any number of adjectives:
<adjp>:<adj>|<adj> <adjp>

22

e Similarly, we can add rules for adverbs <advp> and
prepositional phrases <pp>:

<adv>:quickly|drunkenly|stingily|shamelessly
<advp>:<adv>|<adv> <advp>

<pp>:<p> <np>
<p>:on|over|inside|by|under |around

23

