
CSE 143
Lecture 11

Maps

Grammars

slides created by Alyssa Harding

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Example: studentGrades

• Let’s pretend it’s midterm time and
all the TAs are tired of grading

• We decide to randomly generate grades for all our students!

// generate random grade between 0 and 99

// so that no one aces the test

Random r = new Random();

int grade = r.nextInt(100);

• …I promise this won’t really happen

3

Example: studentGrades

• But this gets tiring too

• We don’t want to hand generate a grade for each student

• If we have a list of all of our students, we could write a

program to loop through them and assign them grades

List<String> students =

new ArrayList<String>();

students.add("Joe");

students.add("Sally");

students.add("Mike");

4

Example: studentGrades

• But we need a way to keep track of which grade
goes with which student

• We could keep another list of all the grades

– Student at index 0 has grade at index 0, and so on

– But that’s tedious

Joe Sally Mikestudents

32 87 51grades

0 1 2

5

Maps

• Solution: maps allow us to associate key/value pairs

– For example, a student name with a grade

• Also known as a dictionary, associative array, hash

– Can think of it as an array where you can have indexes
of any type of Object instead of just ints

Joe

Sally

Mike

student names

32

87

51

grades

Steve

6

Maps

• Java’s Map<K,V> interface that uses generic key/value types

// adds a mapping from the given key to the given value

void put(K key, V value)

// returns the value mapped to the given key (null if none)

V get(K key)

// returns true if the map contains a mapping for the given key

boolean containsKey(K key)

// returns a Set of all keys in the map

Set<K> keySet()

// removes any existing mapping for the given key

remove(K key)

7

Maps

• We will use two implementations of the Map interface:

•TreeMap:

– provides O(log(n)) access to elements

– stores keys in sorted order

•HashMap:

– provides O(1) access to elements

– stores keys in unpredictable order

• The SortedMap interface is also implemented by TreeMap

8

Example: studentGrades

• Using this, can solve our problem of grading by making a map:

Map<String, Integer> studentGrades =

new HashMap<String, Integer>();

• And storing the grades in it:

Random r = new Random();

for (String name : students) {

int grade = r.nextInt(100);

studentGrades.put(name, grade);

}

9

Example: studentGrades

• How can we see the grades?

• We can get a Set of all the keys

– we don’t know anything about a Set

– but it’s Iterable so we can use a foreach loop

for (String name : studentGrades.keySet()) {

System.out.println(name + " " +

studentGrades.get(name));

}

10

Example: wordCount

• Let’s try a tougher problem now

• Given some text file, we want to count how many times each
word occurs

// open the file

Scanner console = new Scanner(System.in);

System.out.print("What is the name of the text file?

");

String fileName = console.nextLine();

Scanner input = new Scanner(new File(fileName));

11

Example: wordCount

• Make a SortedMap to hold the words and their counts:

SortedMap<String, Integer> wordCounts =

new TreeMap<String, Integer>();

12

Example: wordCount

• Put the words into the map:

while (input.hasNext()) {

String next = input.next().toLowerCase();

wordCounts.put(next, 1);

}

But what if the word is already in the map?
This would always keep its count at 1.

13

Example: wordCount

• Instead, we test whether it was there, and if so, increment it:

while (input.hasNext()) {

String next = input.next().toLowerCase();

if (!wordCounts.containsKey(next)) {

wordCounts.put(next, 1);

} else {

wordCounts.put(next,

wordCounts.get(next) + 1);

}

} Note that each key can only map to one value. When we
put a key in multiple times, only the last value is recorded

14

Example: wordCount

• We can also print out all the word counts:

for (String word : wordCounts.keySet()) {

int count = wordCounts.get(word);

System.out.println(count + "\t" + word);

}

Note that the keys (the words) occur in sorted order
because we are using a SortedMap.

15

Grammars

• Grammar:
A description of a language that describes which

sequences of symbols are allowed in that language.

• Grammars describe syntax (rules), not semantics (meaning)

• We will use them to produce syntactically correct sentences

16

Grammars

• Use simplified Backus-Naur Form (BNF) for describing
language:

<symbol> : <expression> | <expression> | ...

• “:” means “is composed of”

• “|” means “or”

17

Grammars

• We can describe the basic structure of an English sentence as
follows:

<s>:<np> <vp>

• "A sentence (<s>) is composed of a noun phrase (<np>)
followed by a verb phrase (<vp>)."

18

Grammars

• We can break down the <np> further into proper nouns:

<np>:<pn>

<pn>:John|Jane|Sally|Spot|Fred|Elmo

• The vertical bar (“|”) means that the a <pn>

can be “John” OR “Jane” OR “Sally” OR …

19

Grammars

• Nonterminals:

– <s>, <np>, <pn>, and <vp>

– we don’t expect them to appear in an actual English sentence

– they are placeholders on the left side of rules

• Terminals:

– “John”, “Jane”, and “Sally”

– they can appear in sentences

– they are final productions on the right side of rules

20

Grammars

• We also need a verb phrase rule, <vp>:

<vp>:<tv> <np>|<iv>

<tv>:hit|honored|kissed|helped

<iv>:died|collapsed|laughed|wept

21

Grammars

• We can expand the <np> rule so that we can have more

complex noun phrases:

<np>:<dp> <adjp> <n>|<pn>

<pn>:John|Jane|Sally|Spot|Fred|Elmo

<dp>:the|a

<n>:dog|cat|man|university|father|mother|child

22

Grammars

• We could just make an <adj> rule:
<adj>:big|fat|green|wonderful|faulty

• But we want to have multiple adjectives:

<adjp>:<adj>|<adj> <adj>|<adj> <adj> <adj>…

• We can use recursion to generate any number of adjectives:

<adjp>:<adj>|<adj> <adjp>

23

Grammars

• Similarly, we can add rules for adverbs <advp> and
prepositional phrases <pp>:

<adv>:quickly|drunkenly|stingily|shamelessly

<advp>:<adv>|<adv> <advp>

<pp>:<p> <np>

<p>:on|over|inside|by|under|around

