
CSE 143
Lecture 13

Recursive Backtracking

slides created by Ethan Apter
http://www.cs.washington.edu/143/

2

Definitions
•  recursive backtracking: backtracking using recursion

• backtracking: a brute-force technique for finding
solutions. This technique is characterized by the the
ability to undo (“backtrack”) when a potential solution
is found to be invalid.

• brute-force: not very smart, but very powerful
–  more specifically: not very efficient, but will find a valid

solution (if a valid solution exists)

• Even though backtracking is a brute-force technique, it is
actually a relatively efficient brute-force technique
–  it’s still slow, but it’s better than some approaches

3

Wait, what?
• Common question: what’s the difference between

“recursion” and “recursive backtracking”?

•  recursion: any method that calls itself (recurses) to solve
a problem

•  recursive backtracking: a specific technique (backtracking)
that is expressed through recursion
–  backtracking algorithms are easily expressed with recursion

all recursive
problems

all recursive
backtracking
problems

4

Basic Idea
• We want to try every possibility to see if it’s a solution

–  unless we already know it’s invalid

• We can view this as a sequence of choices. The first choice
might look something like this:

• What happens if we select one of the options?

choice #1

option #1
option #2

option #3

5

Basic Idea
• Suppose we choose option #3:

• We are presented with another choice (that is based on
the option we chose)

choice #1

option #1
option #2

option #3

choice #2

option #1
option #2

option #3

6

Basic Idea
• And this sequence of choices continues until:

–  you decide you’ve made a bad choice somewhere along
the sequence and want to backtrack

–  you decide you’ve arrived at a perfectly valid solution

• But this process gets pretty hard to draw, because it fans
out so much
–  so you’ll have to use your imagination

• This is also why brute-force techniques are slow
–  exploring every possibility takes time because there are so

many possibilities

7

8 Queens
•  8 Queens is a classic backtracking problem

•  8 Queens: place 8 queens on an 8x8 chessboard so that no
queen threatens another
–  queens can move in a straight line horizontally, vertically, or

diagonally any number of spaces

possible moves threatened! safe!

8

8 Queens
• One possible approach:

–  on an 8x8 chessboard, there are 64 locations
–  each of these locations is a potential location to place the

first queen (this is a choice!)
–  after we place the first queen, there are 63 remaining

locations to place the second queen
• clearly, some of these won’t work, because the second queen

will threaten the first queen.

–  after we place the second queen, there are 62 remaining
locations to place the third queen

–  and so on

• So, there are 178,462,987,637,760 possibilities!
–  178,462,987,637,760 = 64*63*62*61*60*59*58*57

9

8 Queens
• That’s a lot of choices!

• Remember that we’re using a brute-force technique, so
we have to explore all possible choices
–  now you can really see why brute-force techniques are slow!

• However, if we can refine our approach to make fewer
choices, we can go faster
–  we want to be clever about our choices and make as few

choices as possible

•  Fortunately we can do a lot better

10

8 Queens
• Key observation:

–  all valid solutions to 8 Queens will have exactly 1 queen in
each row and exactly 1 queen in each column (otherwise the
queens must threaten each other)

• There are exactly 8 queens, 8 rows, and 8 columns

• So rather than exploring 1-queen-per-board-location, we
can explore 1-queen-per-row or 1-queen-per-column
–  it doesn’t matter which

• We’ll explore 1-queen-per-column

11

8 Queens
• When exploring column-by-column, we have to decide

which row to place the queen for a particular column

• There are 8 columns and 8 rows
–  so we’ve reduced our possible choices to 88 = 16,777,216

• So our first decision looks something like this:

for column #1, in which row should
the queen be placed?

1 2 3 4 5 6 7 8

12

8 Queens
•  If we choose to place the queen in row #5, our decision

tree will look like this:

• Keep in mind that our second choice (column #2) is
affected by our first choice (column #1)

for column #1, in which row should
the queen be placed?

1 2 3 4 5 6 7 8

for column #2, in which row should
the queen be placed?

1 2 3 4 5 6 7 8

13

8 Queens
• So, why are we using backtracking?

–  because backtracking allows us to undo previous choices if
they turn out to be mistakes

• Notice that as we choose which row to place each queen,
we don’t actually know if our choices will lead to a solution
–  we might be wrong!

•  If we are wrong, we want to undo the minimum number
of choices necessary to get back on the right track
–  this also saves as much previous work as possible

14

8 Queens
•  It’s clear that we could explore the possible choices for

the first column with a loop:

 for (int row = 1; row <= 8; row++) // explore column 1

• So we could solve the whole problem with nested loops
somewhat like this:

 for (int row = 1; row <= 8; row++) // column 1
 for (int row = 1; row <= 8; row++) // column 2
 for (int row = 1; row <= 8; row++) // column 3
 ...
 for (int row = 1; row <= 8; row++) // column 8

• But we can write this more elegantly with recursion

15

8 Queens
• Recursive backtracking problems have somewhat of a

general form

• This form is easier to see (and the code is easier to
understand) if we remove some of the low-level details
from our recursive backtracking code

• To do this, we’ll be using some code Stuart Reges wrote.
Stuart’s code is based off code written by one of his former
colleagues named Steve Fisher

• We’re going to use this code to solve N Queens
–  just like 8 queens, but now we can have N queens on an

NxN board (where N is any positive number)

16

N Queens
• What low-level methods do we need for N Queens?

–  We need a constructor that takes a size (to specify N):
 public Board(int size)

–  We need to know if it’s safe to place a queen at a location
 public boolean safe(int row, int col)

–  We need to be able to place a queen on the board
 public void place(int row, int col)

–  We need to be able to remove a queen from the board,
because we might make mistakes and need to backtrack

 public void remove(int row, int col)

–  And we need some general information about the board
 public void print()
 public int size()

17

N Queens
• Assume we have all the previous code

• With that taken care of, we just have to find a solution!
–  easy, right?

•  Let’s write a method called solve to do this:
 public static void solve(Board b) {
 ...
 }

• Unfortunately, solve doesn’t have enough parameters for
us to do our recursion
–  so let’s make a private helper method

18

N Queens
• Our private helper method:
 private static boolean explore(...) {
 ...
 }

• What parameters does explore need?
–  it needs a Board to place queens on
–  it needs a column to explore

• this is a little tricky to see, but this will let each method
invocation work on a different column

• Updated helper method:
 private static boolean explore(Board b, int col) {
 ...
 }

19

N Queens
• Well, now what?

• We don’t want to waste our time exploring dead ends
–  so, if someone wants us to explore column #4, we should

require that columns #1, #2, and #3 all have queens and
that these three queens don’t threaten each other

–  we’ll make this a precondition (it’s a private method, after all)

• So, now our helper method has a precondition:
 // pre : queens have been safely placed in previous
 // columns

20

N Queens
• Time to write our method

• We know it’s going to be recursive, so we need at least:
–  a base case
–  a recursive case

•  Let’s think about the base case first

• What column would be nice to get to? When are we done?
–  For 8 Queens, column 9 (queens 1 to 8 placed safely)

• column 8 is almost correct, but remember that if we’re asked to
explore column 8, the 8th queen hasn’t yet been placed

–  For N Queens, column N+1 (queens 1 to N placed safely)

21

N Queens
• This is our base case!

•  Let’s update our helper code to include it:
 private static boolean explore(Board b, int col) {
 if (col > b.size()) {
 return true;
 } else {
 ...
 }
 }

• Well, that was easy

• What about our recursive case?

22

N Queens
•  For our recursive case, suppose we’ve already placed

queens in previous columns

• We want to try placing a queen in all possible rows for the
current column

• We can try all possible rows using a simple for loop:
 for (int row = 1; row <= board.size(); row++) {
 ...
 }

• This is the same for loop from before!
–  remember, even though we’re using recursion, we still want

to use loops when appropriate

23

N Queens
• When do we want to try placing a queen at a row for the

specified column?
–  only when it is safe to do so!
–  otherwise this location is already threatened and won’t lead

us to a solution

• We can update our code:
 for (int row = 1; row <= board.size(); row++) {
 if (b.safe(row, col)) {
 ...
 }
 }

• We’ve picked our location and determined that it’s safe
–  now what?

24

N Queens
• We need to place a queen at this spot and decide if we

can reach a solution from here
–  if only we had a method that would explore a Board from the

next column and decide if there’s a solution...
–  oh wait! That’s what we’re writing

• We can update our code to place a queen and recurse:
 for (int row = 1; row <= board.size(); row++) {
 if (b.safe(row, col)) {
 b.place(row, col);
 explore(b, col + 1);
 ...
 }
 }

You might be tempted
to write col++ here
instead, but that won’t
work. Why not?

25

N Queens
• Also, we don’t want to call explore quite like that

–  explore returns a boolean, telling us whether or not we
succeeded in finding a solution (true if found, false otherwise)

• What should we do if explore returns true?
–  stop exploring and return true (a solution has been found)

• What should we do if explore returns false?
–  well, the queens we’ve placed so far don’t lead to a solution
–  so, we should remove the queen we placed most recently

and try putting it somewhere else

26

N Queens
• Updated code:
 for (int row = 1; row <= board.size(); row++) {
 if (b.safe(row, col)) {
 b.place(row, col);
 if (explore(b, col + 1)) {
 return true;
 }
 b.remove(row, col);
 }
 }

• We’re almost done. What should we do if we’ve tried
placing a queen at every row for this column, and no
location leads to a solution?
–  No solution exists, so we should return false

This pattern
(make a choice,
recurse, undo
the choice) is
really common
in recursive
backtracking

27

N Queens
• And we’re done! Here’s the final code for explore:

 private static boolean explore(Board b, int col) {
 if (col > b.size()) {
 return true;
 } else {
 for (int row = 1; row <= board.size(); row++) {
 if (b.safe(row, col)) {
 b.place(row, col);
 if (explore(b, col + 1)) {
 return true;
 }
 b.remove(row, col);
 }
 }
 return false;
 }
 }

28

N Queens
• Well, actually we still need to write solve

–  don’t worry, it’s easy!

• We’ll have solve print out the solution if explore finds one.
Otherwise, we’ll have it tell us there’s no solution

• Code for solve:
 public static void solve(Board b) {
 if (explore(b, 1)) {
 System.out.println(“One solution is as follows:”);
 b.print();
 } else {
 System.out.println(“No solution”);
 }
 }

29

N Queens
• We’re really done and everything works

–  try running the code yourself!
–  I think it’s pretty cool that such succinct code can do so much

• There’s also an animated version of the code
–  it shows the backtracking process in great detail
–  if you missed lecture (or if you just want to see the

animation again), download queens.zip from the class
website and run Queens2.java

