CSE 143 Lecture 13

Recursive Backtracking

slides created by Ethan Apter
http://www.cs.washington.edu/143/

Definitions

- recursive backtracking: backtracking using recursion
- backtracking: a brute-force technique for finding solutions. This technique is characterized by the the ability to undo ("backtrack") when a potential solution is found to be invalid.
- brute-force: not very smart, but very powerful
- more specifically: not very efficient, but will find a valid solution (if a valid solution exists)
- Even though backtracking is a brute-force technique, it is actually a relatively efficient brute-force technique
- it's still slow, but it's better than some approaches

Wait, what?

- Common question: what's the difference between "recursion" and "recursive backtracking"?
- recursion: any method that calls itself (recurses) to solve a problem
- recursive backtracking: a specific technique (backtracking) that is expressed through recursion
- backtracking algorithms are easily expressed with recursion

Basic Idea

- We want to try every possibility to see if it's a solution
- unless we already know it's invalid
- We can view this as a sequence of choices. The first choice might look something like this:

- What happens if we select one of the options?

Basic Idea

- Suppose we choose option \#3:

- We are presented with another choice (that is based on the option we chose)

Basic Idea

- And this sequence of choices continues until:
- you decide you've made a bad choice somewhere along the sequence and want to backtrack
- you decide you've arrived at a perfectly valid solution
- But this process gets pretty hard to draw, because it fans out so much
- so you'll have to use your imagination
- This is also why brute-force techniques are slow
- exploring every possibility takes time because there are so many possibilities

8 Queens

- 8 Queens is a classic backtracking problem
- 8 Queens: place 8 queens on an $8 x 8$ chessboard so that no queen threatens another
- queens can move in a straight line horizontally, vertically, or diagonally any number of spaces

possible moves

threatened!

safe!

8 Queens

- One possible approach:
- on an 8×8 chessboard, there are 64 locations
- each of these locations is a potential location to place the first queen (this is a choice!)
- after we place the first queen, there are 63 remaining locations to place the second queen
- clearly, some of these won't work, because the second queen will threaten the first queen.
- after we place the second queen, there are 62 remaining locations to place the third queen
- and so on
- So, there are $178,462,987,637,760$ possibilities!
$-178,462,987,637,760=64 * 63 * 62 * 61 * 60 * 59 * 58 * 57$

8 Queens

- That's a lot of choices!
- Remember that we're using a brute-force technique, so we have to explore all possible choices
- now you can really see why brute-force techniques are slow!
- However, if we can refine our approach to make fewer choices, we can go faster
- we want to be clever about our choices and make as few choices as possible
- Fortunately we can do a lot better

8 Queens

- Key observation:
- all valid solutions to 8 Queens will have exactly 1 queen in each row and exactly 1 queen in each column (otherwise the queens must threaten each other)
- There are exactly 8 queens, 8 rows, and 8 columns
- So rather than exploring 1-queen-per-board-location, we can explore 1-queen-per-row or 1-queen-per-column
- it doesn't matter which
- We'll explore 1-queen-per-column

8 Queens

- When exploring column-by-column, we have to decide which row to place the queen for a particular column
- There are 8 columns and 8 rows
- so we've reduced our possible choices to $8^{8}=16,777,216$
- So our first decision looks something like this:
for column \#1, in which row should the queen be placed?

1	2	3	4	5	6	7	8

8 Queens

- If we choose to place the queen in row \#5, our decision tree will look like this:

- Keep in mind that our second choice (column \#2) is affected by our first choice (column \#1)

8 Queens

- So, why are we using backtracking?
- because backtracking allows us to undo previous choices if they turn out to be mistakes
- Notice that as we choose which row to place each queen, we don't actually know if our choices will lead to a solution
- we might be wrong!
- If we are wrong, we want to undo the minimum number of choices necessary to get back on the right track
- this also saves as much previous work as possible

8 Queens

- It's clear that we could explore the possible choices for the first column with a loop:

```
for (int row = 1; row <= 8; row++) // explore column 1
```

- So we could solve the whole problem with nested loops somewhat like this:

```
for (int row = 1; row <= 8; row++) // column 1
        for (int row = 1; row <= 8; row++) // column 2
        for (int row = 1; row <= 8; row++) // column 3
            for (int row = 1; row <= 8; row++) // column 8
```

- But we can write this more elegantly with recursion

8 Queens

- Recursive backtracking problems have somewhat of a general form
- This form is easier to see (and the code is easier to understand) if we remove some of the low-level details from our recursive backtracking code
- To do this, we'll be using some code Stuart Reges wrote. Stuart's code is based off code written by one of his former colleagues named Steve Fisher
- We're going to use this code to solve N Queens
- just like 8 queens, but now we can have N queens on an NxN board (where N is any positive number)

N Queens

- What low-level methods do we need for N Queens?
- We need a constructor that takes a size (to specify N): public Board(int size)
- We need to know if it's safe to place a queen at a location public boolean safe(int row, int col)
- We need to be able to place a queen on the board public void place (int row, int col)
- We need to be able to remove a queen from the board, because we might make mistakes and need to backtrack

```
public void remove(int row, int col)
```

- And we need some general information about the board

```
public void print()
public int size()
```


N Queens

- Assume we have all the previous code
- With that taken care of, we just have to find a solution!
- easy, right?
- Let's write a method called solve to do this: public static void solve (Board b) \{ \}
- Unfortunately, solve doesn't have enough parameters for us to do our recursion
- so let's make a private helper method

N Queens

- Our private helper method:

```
private static boolean explore(...) {
    }
```

- What parameters does explore need?
- it needs a Board to place queens on
- it needs a column to explore
- this is a little tricky to see, but this will let each method invocation work on a different column
- Updated helper method:
private static boolean explore(Board b, int col) \{
\}

N Queens

- Well, now what?
- We don't want to waste our time exploring dead ends
- so, if someone wants us to explore column \#4, we should require that columns \#1, \#2, and \#3 all have queens and that these three queens don't threaten each other
- we'll make this a precondition (it's a private method, after all)
- So, now our helper method has a precondition:
// pre : queens have been safely placed in previous
// columns

N Queens

- Time to write our method
- We know it's going to be recursive, so we need at least:
- a base case
- a recursive case
- Let's think about the base case first
- What column would be nice to get to? When are we done?
- For 8 Queens, column 9 (queens 1 to 8 placed safely)
- column 8 is almost correct, but remember that if we're asked to explore column 8 , the $8^{\text {th }}$ queen hasn't yet been placed
- For N Queens, column $N+1$ (queens 1 to N placed safely)

N Queens

- This is our base case!
- Let's update our helper code to include it:

```
private static boolean explore(Board b, int col) {
    if (col > b.size()) {
            return true;
        } else {
    }
}
```

- Well, that was easy
- What about our recursive case?

N Queens

- For our recursive case, suppose we've already placed queens in previous columns
- We want to try placing a queen in all possible rows for the current column
- We can try all possible rows using a simple for loop: for (int row = 1; row <= board.size(); row++) \{ \}
- This is the same for loop from before!
- remember, even though we're using recursion, we still want to use loops when appropriate

N Queens

- When do we want to try placing a queen at a row for the specified column?
- only when it is safe to do so!
- otherwise this location is already threatened and won't lead us to a solution
- We can update our code:

```
for (int row = 1; row <= board.size(); row++) {
    if (b.safe(row, col)) {
    }
}
```

- We've picked our location and determined that it's safe
- now what?

N Queens

- We need to place a queen at this spot and decide if we can reach a solution from here
- if only we had a method that would explore a Board from the next column and decide if there's a solution...
- oh wait! That's what we're writing
- We can update our code to place a queen and recurse:

```
for (int row = 1; row <= board.size(); row++) {
    if (b.safe(row, col)) {
            b.place(row, col);
            explore(b, col + 1);
            You might be tempted
                                    to write col++ here
                                    instead, but that won't work. Why not?
}
```


N Queens

- Also, we don't want to call explore quite like that
- explore returns a boolean, telling us whether or not we succeeded in finding a solution (true if found, false otherwise)
- What should we do if explore returns true?
- stop exploring and return true (a solution has been found)
- What should we do if explore returns false?
- well, the queens we've placed so far don't lead to a solution
- so, we should remove the queen we placed most recently and try putting it somewhere else

N Queens

- Updated code:

```
for (int row = 1; row <= board.size(); row++) {
    if (b.safe(row, col)) {
        b.place(row, col);
        if (explore(b, col + 1)) {
                return true;
            }
            b.remove(row, col);
    }
}
```

- We're almost done. What should we do if we've tried placing a queen at every row for this column, and no location leads to a solution?
- No solution exists, so we should return false

N Queens

- And we're done! Here's the final code for explore:

```
private static boolean explore(Board b, int col) {
    if (col > b.size()) {
        return true;
    } else {
        for (int row = 1; row <= board.size(); row++) {
            if (b.safe(row, col)) {
                b.place(row, col);
                    if (explore(b, col + 1)) {
                        return true;
            }
            b.remove(row, col);
            }
        }
        return false;
    }
}
```


N Queens

- Well, actually we still need to write solve
- don't worry, it's easy!
- We'll have solve print out the solution if explore finds one. Otherwise, we'll have it tell us there's no solution
- Code for solve:

```
public static void solve(Board b) {
    if (explore(b, 1)) {
            System.out.println("One solution is as follows:");
            b.print();
        } else {
            System.out.println("No solution");
    }
}
```


N Queens

- We're really done and everything works
- try running the code yourself!
- I think it's pretty cool that such succinct code can do so much
- There's also an animated version of the code
- it shows the backtracking process in great detail
- if you missed lecture (or if you just want to see the animation again), download queens. zip from the class website and run Queens2. java

