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Definitions 
•  recursive backtracking: backtracking using recursion 

• backtracking: a brute-force technique for finding      
solutions.  This technique is characterized by the the        
ability to undo (“backtrack”) when a potential solution            
is found to be invalid. 

• brute-force: not very smart, but very powerful 
–  more specifically: not very efficient, but will find a valid     

solution (if a valid solution exists) 

• Even though backtracking is a brute-force technique, it is 
actually a relatively efficient brute-force technique 
–  it’s still slow, but it’s better than some approaches 
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Wait, what? 
• Common question: what’s the difference between       

“recursion” and “recursive backtracking”? 

•  recursion: any method that calls itself (recurses) to solve          
a problem 

•  recursive backtracking: a specific technique (backtracking)   
that is expressed through recursion 
–  backtracking algorithms are easily expressed with recursion 

all recursive 
problems 

all recursive 
backtracking 
problems 
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Basic Idea 
• We want to try every possibility to see if it’s a solution 

–  unless we already know it’s invalid 

• We can view this as a sequence of choices.  The first choice 
might look something like this: 

• What happens if we select one of the options? 

choice #1 

option #1 
option #2 

option #3 
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Basic Idea 
• Suppose we choose option #3: 

• We are presented with another choice (that is based on       
the option we chose) 

choice #1 

option #1 
option #2 

option #3 

choice #2 

option #1 
option #2 

option #3 
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Basic Idea 
• And this sequence of choices continues until: 

–  you decide you’ve made a bad choice somewhere along           
the sequence and want to backtrack 

–  you decide you’ve arrived at a perfectly valid solution 

• But this process gets pretty hard to draw, because it fans     
out so much 
–  so you’ll have to use your imagination 

• This is also why brute-force techniques are slow 
–  exploring every possibility takes time because there are so     

many possibilities 
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8 Queens 
•  8 Queens is a classic backtracking problem 

•  8 Queens: place 8 queens on an 8x8 chessboard so that no 
queen threatens another 
–  queens can move in a straight line horizontally, vertically, or 

diagonally any number of spaces 

possible moves threatened! safe! 
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8 Queens 
• One possible approach: 

–  on an 8x8 chessboard, there are 64 locations 
–  each of these locations is a potential location to place the        

first queen (this is a choice!) 
–  after we place the first queen, there are 63 remaining      

locations to place the second queen 
• clearly, some of these won’t work, because the second queen        

will threaten the first queen. 

–  after we place the second queen, there are 62 remaining 
locations to place the third queen 

–  and so on 

• So, there are 178,462,987,637,760 possibilities! 
–  178,462,987,637,760 = 64*63*62*61*60*59*58*57 
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8 Queens 
• That’s a lot of choices! 

• Remember that we’re using a brute-force technique, so        
we have to explore all possible choices 
–  now you can really see why brute-force techniques are slow! 

• However, if we can refine our approach to make fewer   
choices, we can go faster 
–  we want to be clever about our choices and make as few    

choices as possible 

•  Fortunately we can do a lot better 
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8 Queens 
• Key observation: 

–  all valid solutions to 8 Queens will have exactly 1 queen in     
each row and exactly 1 queen in each column (otherwise the 
queens must threaten each other) 

• There are exactly 8 queens, 8 rows, and 8 columns 

• So rather than exploring 1-queen-per-board-location, we      
can explore 1-queen-per-row or 1-queen-per-column 
–  it doesn’t matter which 

• We’ll explore 1-queen-per-column 
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8 Queens 
• When exploring column-by-column, we have to decide      

which row to place the queen for a particular column 

• There are 8 columns and 8 rows 
–  so we’ve reduced our possible choices to 88 = 16,777,216 

• So our first decision looks something like this: 

for column #1, in which row should 
the queen be placed? 

1 2 3 4 5 6 7 8 
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8 Queens 
•  If we choose to place the queen in row #5, our decision       

tree will look like this: 

• Keep in mind that our second choice (column #2) is      
affected by our first choice (column #1) 

for column #1, in which row should 
the queen be placed? 

1 2 3 4 5 6 7 8 

for column #2, in which row should 
the queen be placed? 

1 2 3 4 5 6 7 8 
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8 Queens 
• So, why are we using backtracking? 

–  because backtracking allows us to undo previous choices if     
they turn out to be mistakes 

• Notice that as we choose which row to place each queen,     
we don’t actually know if our choices will lead to a solution 
–  we might be wrong! 

•  If we are wrong, we want to undo the minimum number        
of choices necessary to get back on the right track 
–  this also saves as much previous work as possible 
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8 Queens 
•  It’s clear that we could explore the possible choices for        

the first column with a loop: 

    for (int row = 1; row <= 8; row++) // explore column 1 

• So we could solve the whole problem with nested loops 
somewhat like this: 

    for (int row = 1; row <= 8; row++) // column 1 
      for (int row = 1; row <= 8; row++) // column 2 
        for (int row = 1; row <= 8; row++) // column 3 
          ... 
            for (int row = 1; row <= 8; row++) // column 8 

• But we can write this more elegantly with recursion 
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8 Queens 
• Recursive backtracking problems have somewhat of a    

general form 

• This form is easier to see (and the code is easier to 
understand) if we remove some of the low-level details      
from our recursive backtracking code 

• To do this, we’ll be using some code Stuart Reges wrote.     
Stuart’s code is based off code written by one of his former 
colleagues named Steve Fisher 

• We’re going to use this code to solve N Queens 
–  just like 8 queens, but now we can have N queens on an        

NxN board (where N is any positive number) 
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N Queens 
• What low-level methods do we need for N Queens? 

–  We need a constructor that takes a size (to specify N): 
        public Board(int size) 

–  We need to know if it’s safe to place a queen at a location 
        public boolean safe(int row, int col) 

–  We need to be able to place a queen on the board 
        public void place(int row, int col) 

–  We need to be able to remove a queen from the board,     
because we might make mistakes and need to backtrack 

        public void remove(int row, int col) 

–  And we need some general information about the board 
        public void print() 
        public int size() 
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N Queens 
• Assume we have all the previous code 

• With that taken care of, we just have to find a solution! 
–  easy, right? 

•  Let’s write a method called solve to do this: 
    public static void solve(Board b) { 
        ... 
    } 

• Unfortunately, solve doesn’t have enough parameters for    
us to do our recursion 
–  so let’s make a private helper method 
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N Queens 
• Our private helper method: 
      private static boolean explore(...) { 
          ... 
      } 

• What parameters does explore need? 
–  it needs a Board to place queens on 
–  it needs a column to explore 

• this is a little tricky to see, but this will let each method        
invocation work on a different column 

• Updated helper method: 
      private static boolean explore(Board b, int col) { 
          ... 
      } 
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N Queens 
• Well, now what? 

• We don’t want to waste our time exploring dead ends 
–  so, if someone wants us to explore column #4, we should  

require that columns #1, #2, and #3 all have queens and       
that these three queens don’t threaten each other 

–  we’ll make this a precondition (it’s a private method, after all) 

• So, now our helper method has a precondition: 
    // pre : queens have been safely placed in previous 
    //       columns 
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N Queens 
• Time to write our method 

• We know it’s going to be recursive, so we need at least: 
–  a base case 
–  a recursive case 

•  Let’s think about the base case first 

• What column would be nice to get to?  When are we done? 
–  For 8 Queens, column 9 (queens 1 to 8 placed safely) 

• column 8 is almost correct, but remember that if we’re asked to 
explore column 8, the 8th queen hasn’t yet been placed 

–  For N Queens, column N+1 (queens 1 to N placed safely) 
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N Queens 
• This is our base case! 

•  Let’s update our helper code to include it: 
      private static boolean explore(Board b, int col) { 
          if (col > b.size()) { 
              return true; 
          } else { 
              ... 
          } 
      } 

• Well, that was easy 

• What about our recursive case? 
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N Queens 
•  For our recursive case, suppose we’ve already placed     

queens in previous columns 

• We want to try placing a queen in all possible rows for the 
current column 

• We can try all possible rows using a simple for loop: 
      for (int row = 1; row <= board.size(); row++) { 
          ... 
      } 

• This is the same for loop from before! 
–  remember, even though we’re using recursion, we still want       

to use loops when appropriate 
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N Queens 
• When do we want to try placing a queen at a row for the 

specified column? 
–  only when it is safe to do so! 
–  otherwise this location is already threatened and won’t lead       

us to a solution 

• We can update our code: 
      for (int row = 1; row <= board.size(); row++) { 
          if (b.safe(row, col)) { 
              ... 
          } 
      } 

• We’ve picked our location and determined that it’s safe 
–  now what? 
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N Queens 
• We need to place a queen at this spot and decide if we        

can reach a solution from here 
–  if only we had a method that would explore a Board from the 

next column and decide if there’s a solution... 
–  oh wait!  That’s what we’re writing 

• We can update our code to place a queen and recurse: 
      for (int row = 1; row <= board.size(); row++) { 
          if (b.safe(row, col)) { 
              b.place(row, col); 
              explore(b, col + 1); 
              ... 
          } 
      } 

You might be tempted 
to write col++ here 
instead, but that won’t 
work.  Why not? 
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N Queens 
• Also, we don’t want to call explore quite like that 

–  explore returns a boolean, telling us whether or not we  
succeeded in finding a solution (true if found, false otherwise) 

• What should we do if explore returns true? 
–  stop exploring and return true (a solution has been found) 

• What should we do if explore returns false? 
–  well, the queens we’ve placed so far don’t lead to a solution 
–  so, we should remove the queen we placed most recently        

and try putting it somewhere else 
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N Queens 
• Updated code: 
      for (int row = 1; row <= board.size(); row++) { 
          if (b.safe(row, col)) { 
              b.place(row, col); 
              if (explore(b, col + 1)) { 
                  return true; 
              } 
              b.remove(row, col); 
          } 
      } 

• We’re almost done.  What should we do if we’ve tried        
placing a queen at every row for this column, and no     
location leads to a solution? 
–  No solution exists, so we should return false 

This pattern 
(make a choice, 
recurse, undo 
the choice) is 
really common 
in recursive 
backtracking 
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N Queens 
• And we’re done!  Here’s the final code for explore: 

    private static boolean explore(Board b, int col) { 
       if (col > b.size()) { 
          return true; 
       } else { 
          for (int row = 1; row <= board.size(); row++) { 
             if (b.safe(row, col)) { 
                b.place(row, col); 
                if (explore(b, col + 1)) { 
                   return true; 
                } 
                b.remove(row, col); 
             } 
          } 
          return false; 
       } 
    } 
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N Queens 
• Well, actually we still need to write solve 

–  don’t worry, it’s easy! 

• We’ll have solve print out the solution if explore finds one.  
Otherwise, we’ll have it tell us there’s no solution 

• Code for solve: 
      public static void solve(Board b) { 
          if (explore(b, 1)) { 
              System.out.println(“One solution is as follows:”); 
              b.print(); 
          } else { 
              System.out.println(“No solution”); 
          } 
      } 



29 

N Queens 
• We’re really done and everything works 

–  try running the code yourself! 
–  I think it’s pretty cool that such succinct code can do so much 

• There’s also an animated version of the code 
–  it shows the backtracking process in great detail 
–  if you missed lecture (or if you just want to see the        

animation again), download queens.zip from the class        
website and run Queens2.java 


