
CSE 143
Lecture 14

AnagramSolver
and

Hashing

slides created by Ethan Apter
http://www.cs.washington.edu/143/

2

Ada Lovelace (1815-1852)

<http://en.wikipedia.org/wiki/Ada_lovelace>

• Ada Lovelace is considered the
first computer programmer for
her work on Charles Babbage’s
analytical engine

• She was a programmer back
when computers were still
theoretical!

3

Alan Turing (1912-1954)

<http://en.wikipedia.org/wiki/Alan_turing>

• Alan Turing made key
contributions to artificial
intelligence (the Turing test)
and computability theory (the
Turing machine)

• He also worked on breaking
Enigma (a Nazi encryption
machine)

4

Grace Hopper (1906-1992)

<http://en.wikipedia.org/wiki/Grace_hopper>

• Grace Hopper developed the
first compiler

• She was responsible for the
idea that programming code
could look like English rather
than machine code

• She influenced the languages
COBOL and FORTRAN

5

Alan Kay (1940)

<http://en.wikipedia.org/wiki/Alan_Kay>

• Alan Kay worked on Object-
Oriented Programming

• He designed SmallTalk, a
programming language in
which everything is an object

• He also worked on graphical
user interfaces (GUIs)

6

John McCarthy (1927)

<http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)>
<http://en.wikipedia.org/wiki/Lisp_(programming_language)>

<http://www-formal.stanford.edu/jmc/jmcbw.jpg>

• John McCarthy designed Lisp
(“Lisp” is short for “List
Processing”)

• He invented if/else

• Lisp is a very flexible language
and was popular with the
Artificial Intelligence community

7

Anagrams
• anagram: a rearrangement of the letters from a word or

phrase to form another word or phrase

• Consider the phrase “word or phrase”
–  one anagram of “word or phrase” is “sparrow horde”

• Some other anagrams:
–  “Alyssa Harding”  “darling sashay”
–  “Ethan Apter”  “ate panther”

s p a r r o w h o r d e

w o r d o r p h r a s e

8

AnagramSolver

• Your next assignment is to write a class named
AnagramSolver

• AnagramSolver finds all the anagrams for a given word or
phrase (within the specified dictionary)
–  it uses recursive backtracking to do this

• AnagramSolver may well be either the easiest or hardest
assignment this quarter
–  easy: it’s similar to 8 Queens, it’s short (approx. 50 lines)
–  hard: it’s your first recursive backtracking assignment

9

AnagramSolver

• Consider the phrase “Ada Lovelace”

• Some anagrams of “Ada Lovelace” are:
–  “ace dale oval”
–  “coda lava eel”
–  “lace lava ode”

• We could think of each anagram as a list of words:
–  “ace dale oval”  [ace, dale, oval]
–  “coda lava eel”  [coda, lava, eel]
–  “lace lava ode”  [lace, lava, ode]

10

AnagramSolver

• Consider also the small dictionary file dict1.txt:

• We’re going to use only the words from this dictionary to
make anagrams of “Ada Lovelace”

ail
alga
angular
ant
coda
eel
gal
gala
giant
gin

gnat
lace
lain
lava
love
lunar
nag
natural
nit
ruin

run
rung
tag
tail
tan
tang
tin
urinal
urn

11

AnagramSolver

• Which is the first word in this list that could be part of an
anagram of “Ada Lovelace”

–  ail
• no: “Ada Lovelace” doesn’t contain an “i”

–  alga
• no: “Ada Lovelace” doesn’t contain a “g”

–  angular
• no: “Ada Lovelace” doesn’t contain an “n”, a “g”, a “u”, or an “r”

–  ant
• no: “Ada Lovelace” doesn’t contain an “n” or a “t”

–  coda
• yes: “Ada Lovelace” contains all the letters in “coda”

12

AnagramSolver

• This is just like making a choice in recursive backtracking:

Which could be the first word in our anagram?

ail alga angular ant

coda eel etc...

Which could be the second word in our
anagram?

ail alga angular ant

coda eel etc...

13

AnagramSolver

• At each level, we go through all possible words
–  but the letters we have left to work with changes!

Which could be in an anagram of “Ada Lovelace”?

ail alga angular ant

coda eel etc...

Which could be in an anagram of “a Lvelae”?

ail alga angular ant

coda eel etc...

14

Low-Level Details
• Clearly there are some low level details here in deciding

whether one phrase contains the same letters as another

•  Just like 8 Queens had the Board class for its low-level
details, we’ll have a class that handles the low-level details
of AnagramSolver

• This low-level detail class is called LetterInventory
–  as you might have guessed, it keeps track of letters

• And we’ll give it to you!

15

LetterInventory

• LetterInventory has the following methods (described
further in the write-up):

 public LetterInventory(String s)

 public void add(LetterInventory li)

 public boolean contains(LetterInventory li)

 public boolean isEmpty()

 public int size()

 public void subtract(LetterInventory li)

 public String toString()

16

LetterInventory

•  Let’s construct and print a LetterInventory:

 LetterInventory li = new LetterInventory(“Hello”);
 li.isEmpty(); // returns false
 li.size(); // returns 5
 System.out.println(li); // prints [ehllo]

• li contains 1 e, 1 h, 2 l’s, and 1 o

• We can also do some operations on li:

 LetterInventory li2 = new LetterInventory(“heel”);
 li.contains(li2); // returns false
 li.add(li2);
 System.out.println(li); // prints [eeehhlllo]
 li.contains(li2); // returns true
 li.substract(li2);
 System.out.println(li); // prints [ehllo]

17

AnagramSolver

• AnagramSolver has a lot in common with 8 Queens
–  I can’t stress this enough! If you understand 8 Queens,

writing AnagramSolver shouldn’t be too hard

• Key questions to ask yourself on this assignment:
–  When am I done?

• for 8 Queens, we were done when we reached column 9

–  If I’m not done, what are my options?
• for 8 Queens, the options were the possible rows for this column

–  How do I make and un-make choices?
• for 8 Queens, this was placing and removing queens

18

AnagramSolver

• You must include two optimizations in your assignment
–  because backtracking is inefficient, we need to gain some

speed where we can

• You must preprocess the dictionary into
LetterInventorys
–  you’ll store these in a Map

• specifically, in a HashMap, which is slightly faster than a TreeMap

• You must prune the dictionary before starting the recursion
–  by “prune,” we mean remove all the words that couldn’t

possibly be in an anagram of the given phrase
–  you need do this only once (before starting the recursion)

19

Maps
• Recall that Maps have the following methods:

 // adds a mapping from the given key to the given value
 void put(K key, V value)

 // returns the value mapped to the given key (null if none)
 V get(K key)

 // returns true if the map contains a mapping for the given key
 boolean containsKey(K key)

 // removes any existing mapping for the given key
 remove(K key)

• A HashMap can perform all of these operations in O(1)
–  that’s really fast!
–  this makes HashMaps really useful for many applications

20

Hashing
•  In order to do these operations quickly, HashMaps don’t

attempt to preserve the order of their keys and values

• Consider the following int array with 4 valid values:

• What would be a better order for fast access?

0 1 2 3 4 5 6 7 8 9

3 7 11 26 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 11 0 3 0 0 26 7 0 0

21

Hashing
• hashing: mapping a value to an integer index

• hash table: an array that stores elements by hashing

• hash function: an algorithm that maps values to indexes
–  e.g. hashFunction(value)  Math.abs(value) % arrayLength

 11 % 10 == 1 (11 inserted at index 1)
 3 % 10 == 3 (3 inserted at index 3)
 26 % 10 == 6 (26 inserted at index 6)
 7 % 10 == 7 (7 inserted at index 7)

0 1 2 3 4 5 6 7 8 9

0 11 0 3 0 0 26 7 0 0

22

Hashing
• So far, we’ve treated keys and values like they’re the same

thing, but they’re not
–  the key is used to located and identify the value
–  the value is the information that we want to store/retrieve

• With maps, we work with both a key and a value
–  we hash the key to determine the index
–  ...and then we store the value at this index

• So what we’ve done so far is:
–  with a key of 11, add the value 11 to the array
–  with a key of 3, add the value 3 to the array
–  etc

23

Hashing
• But we don’t have to make the key the same as the value

• Consider the array from before:

• This is what happens if we use a key of 8 to add value 4:

• But notice that our key (8) is completely gone

0 1 2 3 4 5 6 7 8 9

0 11 0 3 0 0 26 7 0 0

0 1 2 3 4 5 6 7 8 9

0 11 0 3 0 0 26 7 4 0

24

Hashing
• Now we can support all the simple operations of a Map:

–  put(key, value)
 int index = hashFunction(key);
 array[index] = value;

–  get(key)
 return array[hashFunction(key)];

–  remove(key)
 array[hashFunction(key)] = 0;

• But what happens if another value is already there?

25

Collisions
•  If we use a key of 41 to add value 5 to our array, we’ll

overwrite the old value (11) at index 1:

• This is called a collision

•  collision: when a hash functions maps more than one
element to the same index
–  collisions are bad
–  they also happen a lot

•  collision resolution: an algorithm for handling collisions

0 1 2 3 4 5 6 7 8 9

0 5 0 3 0 0 26 7 4 0

26

Collisions
• To handle collisions, we first have to be able to tell the

keys and values apart
–  we’ve been remembering the values
–  but we also need to remember the original key!

• Consider the following simple class:
 public class IntInt {
 public int key;
 public int value;
 }

• We’ll make an array of IntInts instead of regular ints

•  I’ll draw IntInts like this: 3, 7

key value

27

Probing
• probing: resolving a collision by moving to another index

–  linear probing: probes by moving to the next index
 // put(key, value)
 put(11, 11)
 put(3, 3)
 put(26, 26)
 put(7, 7)
 put(41, 5) // bumped to index 2 instead

•  If we look at the keys, we can still tell if we’ve found the
right object (even if it’s not where we first expect)

0 1 2 3 4 5 6 7 8 9

null null null null null

41, 5
11, 11 3, 3 26, 26 7, 7

28

Clustering
•  Linear probing can lead to clustering

•  clustering: groups of elements at neighboring indexes
–  slows down hash table lookup (must loop over elements)

 put(13, 1)
 put(25, 2)
 put(97, 3)
 put(73, 4) // collides with 1
 put(75, 5) // collides with 2
 put(3, 6) // collides with 1, 4, 2, 5, and 3!

0 1 2 3 4 5 6 7 8 9

null null null null

13, 1 73, 4
25, 2

75, 5
97, 3

3, 6

29

Chaining
•  chaining: resolving collisions by storing a list at each index

–  we still must traverse the lists
–  but ideally the lists are short
–  and we never run out of room

0 1 2 3 4 5 6 7 8 9

null null null null null null null

13, 1

73, 4

25, 2

97, 3

75, 5

3, 6

30

Rehashing
•  rehash: grow to larger array when table becomes too full

–  because we want to keep our O(1) operations
–  we can’t simply copy the old array to the new one. Why?

•  If we just copied the old array to the new one, we might
not be putting the keys/values at the right indexes
–  recall that our hash function uses the array length
–  when the array length changes, the result from the hash

function will change, even though the keys are the same
–  so we have to rehash every element

•  load factor: ratio of (# of elements) / (array length)
–  many hash tables grow when load factor ≈ 0.75

31

Hashing Objects
•  It’s easy to hash ints

–  but how can we hash non-ints, like objects?

• We’d have to convert them to ints somehow
–  because arrays only use ints for indexes

•  Fortunately, Object has the following method defined:
 // returns an integer hash code for this object
 public int hashCode()

• The implementation of hashCode() depends on the
object, because each object has different data inside
–  String’s hashCode() adds the ASCII values of its letters

–  You can also write a hashCode() for your own Objects

