
CSE 143
Lecture 15

Binary Trees

slides created by Alyssa Harding

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Binary trees

• Another data structure, shaped like an upside down tree:

921

3078

5

29

82 16

3

Definition

• A binary tree is either
(a) an empty tree or

(b) a root node with a left subtree and a right subtree

• This definition is recursive

See? No tree!

? ?

4

Definition

• The recursive definition lets us build any shape tree:

5

Terminology

• Root

– The node at the top of the tree

• Leaf

– A node with two empty
subtrees

• Branch

– A node with one or more
non-empty subtrees

921

3078

5

29

82 16

Leaf nodes

Root node

Branch nodes

6

Terminology

• Child

– Any node our node
refers to

• Parent

– The node that refers
to our node

• Sibling

– Another child of the
parent of our node

921

3078

5

29

82 16

Looking at our 78 node:

child

parent
sibling

7

Terminology

• Ancestor

– A parent of a parent of…our node

– 5 is an ancestor of 82

• Descendent

– A child of a child of…our node

– 16 is a descendent of 30 921

3078

5

29

82 16

8

Terminology

• Depth of a node

– Length of the path from
the root to the node

– Depth of the 29 node is 2

• Height

– Length of longest path

from the root to a node

– Height is 3

921

3078

5

29

82 16

9

IntTreeNode

• So how do we make these trees?

• We need building blocks

– For our LinkedIntList, we had IntNodes

– For our IntTree, we have IntTreeNodes

left data right

42

10

IntTreeNode

• Our new building block has two pointers

public class IntTreeNode {

public int data;

public IntTreeNode left;

public IntTreeNode right;

public IntTreeNode(int data) {

this(data, null, null);

}

public IntTreeNode(int data, IntTreeNode left,

IntTreeNode right) {

this.data = data;

this.left = left;

this.right = right;

}

}

11

IntTree

• We encapsulate the building blocks in a class:

public class IntTree {

private IntTreeNode overallRoot;

...

}

The client never sees the nodes,
And we have keep track of the root

of our entire tree

12

IntTree

• We have code that will build a random tree of a given height

• We have code that prints the structure of the tree

• We can use JGrasp to view the tree

13

Traversals

• Great, but what if we want to print out one line of output?

• It’s not like a list where we know what order to print in

– We need to print the root node’s data

– We need to print the left subtree

– We need to print the right subtree

• We get different traversal order from
choosing different orders to process the tree

14

Traversals

• Preorder:
root, left, right

5 78 29 82 30 21 9 16

• Inorder:

left, root, right

78 82 29 5 21 30 9 16

• Postorder:

left, right, root

82 29 78 21 16 9 30 5

921

3078

5

29

82 16

15

Traversals

• Sailboat method:
A visual way to do traversals

– Trace a path around the nodes

– Write down the data of the
node when you pass…

• On its left,
for a preorder traversal

• Under it,
for an inorder traversal

• On its right,
for a postorder traversal

921

3078

5

29

82 16

16

Example: printPreorder

• Now we want a method to print the preorder traversal:

public void printPreorder() {

...

}

We need to know which node we’re
examining

17

Example: printPreorder

• We make a private helper method to look at one specific node:

public void printPreorder() {

System.out.println("Preorder:");

printPreorder(overallRoot);

System.out.println();

}

private void printPreorder(IntTreeNode root) {

...

}
The public method also starts the

whole process by calling the private
method with the overallRoot

18

Example: printPreorder

• What is our base case? A null node is an empty tree!

private void printPreorder(IntTreeNode root) {

if (root == null) {

// do nothing?

} else {

...

}

} Instead of having an empty if statement,
invert the test!

19

Example: printPreorder

• What is our recursive case?
Since it’s preorder, we first want to print the root’s data:

private void printPreorder(IntTreeNode root) {

if (root != null) {

System.out.print(root.data + “ “);

}

}

20

Example: printPreorder

• We also want to print a preorder traversal of the left subtree.
If only we had a method...

private void printPreorder(IntTreeNode root) {

if (root != null) {

System.out.print(root.data + “ “);

printPreorder(root.left);

}

}

21

Example: printPreorder

• The last part is the right subtree:

private void printPreorder(IntTreeNode root) {

if (root != null) {

System.out.print(root.data + “ “);

printPreorder(root.left);

printPreorder(root.right);

}

}

22

Example: printPreorder

• It’s amazingly short code, just like we’ve seen before with
recursion

• When we call our recursive method, it prints the entire subtree

• The code for printInorder and printPostorder

are very similar

– Remember, the difference was in the order in which we
processed the root, the left subtree, and the right subtree

23

Example: printInorder

• For an inorder traversal, we process the root in the middle:

private void printInorder(IntTreeNode root) {

if (root != null) {

printPreorder(root.left);

System.out.print(root.data + “ “);

printPreorder(root.right);

}

}

24

Example: printPostorder

• For a postorder traversal, we process the root last:

private void printPostorder(IntTreeNode root) {

if (root != null) {

printPreorder(root.left);

printPreorder(root.right);

System.out.print(root.data + “ “);

}

}

