
CSE 143
Lecture 16

Binary Trees

slides created by Alyssa Harding

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Binary trees

• Before, we wrote methods that traversed a tree

• Now we want to change the structure of a tree

3

Example: addLeaves

• Our first example, addLeaves, will take an int

parameter and add leaves with that value

• For instance, with a tree variable t,
a call of t.addLeaves(4):

94

3078

5

4

4 4

4 9

3078

5

4

Example: addLeaves

• We start with our public/private pair:

public void addLeaves(int n) {

addLeaves(overallRoot, n);

}

private void addLeaves(IntTreeNode root, int n){

...

} The public method starts the whole process by
calling the private method with the overallRoot

while the private method focuses on one subtree

5

Example: addLeaves

• Then we focus on our base case:

private void addLeaves(IntTreeNode root, int n) {

if (root == null) {

root = new IntTreeNode(n);

} else {

...

}

} If we’ve reached a null node, it means we’ve
reached an empty subtree where we can add a leaf

6

Example: addLeaves

• Then we focus on our recursive case:

private void addLeaves(IntTreeNode root, int n) {

if (root == null) {

root = new IntTreeNode(n);

} else {

addLeaves(root.left,n);

addLeaves(root.right,n);

}

} Otherwise, I want to add leaves to both of the subtrees.
Good thing I have a method that does that!

7

Example: addLeaves

• So we’re done...

private void addLeaves(IntTreeNode root, int n) {

if (root == null) {

root = new IntTreeNode(n);

} else {

addLeaves(root.left,n);

addLeaves(root.right,n);

}

}

But this code doesn’t
change anything.

8

x = change(x)

• Why not?

• Let’s look at an example using Point objects

x y

7 42

9

x = change(x)

import java.awt.*;

public class PointTest {

public static void main(String[] args) {

Point x = new Point(7, 42);

System.out.println("x = " + x);

change(x);

System.out.println("now x = " + x);

}

public static void change(Point p) {

p.translate(3, 8);

p = new Point(-33, -17);

System.out.println("p = " + p);

}

}

10

x = change(x)

• Given this code that manipulates a Point,

what will it output?

• The first two lines are straightforward,

but the last one might be surprising:

x = java.awt.Point[x=7,y=42]

p = java.awt.Point[x=-33,y=-17]

now x = java.awt.Point[x=10,y=50]

•x does not refer to our new Point,
but the old translated Point

11

x = change(x)

• When we pass an object as a parameter,
the parameter gets a copy of the reference

to the object

change(x);

x y

7 42
x

p

12

x = change(x)

• So when call a method on p, it affects the object that x

refers to because they refer to the same object

p.translate(3, 8);

x y

10 50
x

p

13

x = change(x)

• But p can’t change x itself

p = new Point(-33, -17);

x y

10 50
x

p
x y

-33 -17

14

x = change(x)

• We can also think of these references like cell phone numbers

• Just like when we passed the parameter, I can
give you a copy of Ethan’s cell phone number

• Just like the method call, you can call him too

• But you can’t scratch out your copy of his number
and assume that mine is destroyed as well

15

x = change(x)

• How do we get around this?

• We want our original variable, x,

to refer to the same object as p

• A strategy we call “x assign change of x”

– x = change(x)

16

x = change(x)

• To get the reference to our new object back to
our original variable, we can return it

public static Point change(Point p) {

p.translate(3, 8);

p = new Point(-33, -17);

System.out.println("p = " + p);

return p;

}

}

17

x = change(x)

• Then, when we call the method, we assign
our original variable to the returned reference

public class PointTest {

public static void main(String[] args) {

Point x = new Point(7, 42);

System.out.println("x = " + x);

x = change(x);

System.out.println("now x = " + x);

}

Now our last print statement uses
our new Point object

18

Example: addLeaves

• We can apply this to addLeaves to change the references

private IntTreeNode addLeaves(IntTreeNode root,

int n) {

if (root == null) {

root = new IntTreeNode(n);

} else {

addLeaves(root.left,n);

addLeaves(root.right,n);

}

return root;

}

First we make sure that the private
method returns the node object

19

Example: addLeaves

• We also want to use the return value

private IntTreeNode addLeaves(IntTreeNode root,

int n) {

if (root == null) {

root = new IntTreeNode(n);

} else {

root.left = addLeaves(root.left,n);

root.right = addLeaves(root.right,n);

}

return root;

}

Then we make sure that we assign
variables to the return value
anytime we call the method

20

Example: addLeaves

• The public method also needs to be modified

public void addLeaves(int n) {

overallRoot = addLeaves(overallRoot, n);

}

Now we’re done!

21

Example: removeIfLeaf

• Now let’s do the opposite: removeIfLeaf takes an int

and removes all leaf nodes storing that data

public void removeIfLeaf(int n) {

overallRoot = removeIfLeaf(overallRoot, n);

}

private IntTreeNode removeIfLeaf(

IntTreeNode root, int n) {

...

}
The public method header looks the same,

but our private method returns a node

22

Example: removeIfLeaf

• Now we think of our base case:

private IntTreeNode removeIfLeaf(

IntTreeNode root, int n) {

if (root != null) {

if (root.data == n && root.left == null

&& root.right == null) {

root = null;

}

...

}

We’ll stop if the root node is null or if we’ve
found a leaf with the same data

23

Example: removeIfLeaf

• Now we think of our recursive case:

private IntTreeNode removeIfLeaf(

IntTreeNode root, int n) {

if (root != null) {

if (root.data == n && root.left == null

&& root.right == null) {

root = null;

} else {

root.left = removeIfLeaf(root.left, n);

root.right = removeIfLeaf(root.right, n);

}

}

return root;

}

Otherwise, we want to remove leaves
from the left and right subtrees

