
CSE 143
Lecture 17

Binary Search Trees
and

Comparable

slides created by Ethan Apter
http://www.cs.washington.edu/143/

2

Binary Search Tree (BST)
• Binary search tree: a binary tree on which you can perform

binary search

•  For every subtree in a binary search tree, the following
property holds:

• Remember: this property holds for every subtree, not just
for the overall root

x

values <= x values > x

This is sometimes
called the “binary
search tree property”

3

Duplicate Values
• We must handle duplicates somehow

• We’re going to handle duplicates by putting them in the left
subtree (as shown on the previous slide)

• But there are also other options:
–  we could choose to not allow duplicates in our tree
–  we could choose to put the duplicates in the right subtree

•  It doesn’t really matter which one we choose, so long as
we’re consistent

4

BST of Names
•  Let’s create a BST of names (Strings)

• How will we compare one name to another?

• One name is less than another when the former comes
before the latter alphabetically
–  so “A” < “B”

• One name is greater than another when the former comes
after the latter alphabetically
–  so “B” > “A”

5

BST of Names
•  Let’s start with an empty tree and add the following names

in the given order:
–  Peter, Michael, Kim, Morgan, Baron, and Toby

Peter

6

BST of Names
•  Let’s start with an empty tree and add the following names

in the given order:
–  Peter, Michael, Kim, Morgan, Baron, and Toby

Peter

Michael

7

BST of Names
•  Let’s start with an empty tree and add the following names

in the given order:
–  Peter, Michael, Kim, Morgan, Baron, and Toby

Peter

Michael

Kim

8

BST of Names
•  Let’s start with an empty tree and add the following names

in the given order:
–  Peter, Michael, Kim, Morgan, Baron, and Toby

Peter

Michael

Kim Morgan

9

BST of Names
•  Let’s start with an empty tree and add the following names

in the given order:
–  Peter, Michael, Kim, Morgan, Baron, and Toby

Peter

Michael

Kim Morgan

Baron

10

BST of Names
•  Let’s start with an empty tree and add the following names

in the given order:
–  Peter, Michael, Kim, Morgan, Baron, and Toby

Peter

Michael

Kim Morgan

Baron

Toby

11

BST of Names
• What’s the in-order traversal of this tree?

–  Baron, Kim, Michael, Morgan, Peter, Toby
–  notice that this is also sorted order!

• Why does this happen?

•  in-order traversal
–  left subtree, current node, right subtree

•  in-order traversal in a BST
–  values <= current value, current value, values > current value

left subtree right subtree current node

12

add

•  Let’s write an add method that will preserve the binary
search tree property

 public void add(int value) {
 ...
 }

•  Like most recursive tree methods, we’ll need a private
helper method to keep track of our current node

• We also know to use “x = change(x)” because we’re
modifying the tree

13

add

• Here’s our updated add method

 public void add(int value) {
 overallRoot = add(overallRoot, value);
 }

 private IntTreeNode add(IntTreeNode root, int value) {
 ...
 }

• Now we have to write the rest of the code

14

add

• What’s the simplest tree we could add a node to?
–  the empty tree
–  this is our base case

•  For the empty tree, we’ll just return a new node

• What about our recursive case(s)?
–  if the value to add is less than or equal to the value of the

current node
•  ...add a new node to the left subtree

–  if the value to add is greater than the value of the current node
•  ...add a new node to the right subtree

15

add

• Here’s our completed add method

 public void add(int value) {
 overallRoot = add(overallRoot, value);
 }

 private IntTreeNode add(IntTreeNode root, int value) {
 if (root == null)
 root = new IntTreeNode(value);
 else if (value <= root.data)
 root.left = add(root.left, value);
 else
 root.right = add(root.right, value);
 return root;
 }

16

BST Wrap-up
• We’ve seen that BSTs can handle different kinds of objects

–  Strings are sorted alphabetically
–  ints are sorted by non-decreasing value

• Strings can be compared to other Strings

• ints can be compared to other ints

• So we could even define our own class to put in a BST, so
long as we can compare different instances of this class
–  you’ll have to write a class like this on your final

17

PerceivedTemperature

•  Let’s write a simple class called PerceivedTemperature
that keeps track of both the perceived temperature and
actual temperature.

• Constructor code
 public class PerceivedTemperature {
 private int pTemp;
 private int aTemp;

 public class PerceivedTemperature(int pt, int at) {
 pTemp = pt;
 aTemp = at;
 }
 }

18

PerceivedTemperature

•  Let’s also give it a few more simple methods

 public int getPerceivedTemperature() {
 return pTemp;
 }

 public int getActualTemperature() {
 return aTemp;
 }

 public String toString() {
 return pTemp + “ (“ + aTemp + “) “ + degrees;
 }

•  It’s still a simple class, but now it has some functionality

19

Some Client Code
•  Let’s also make some simple client code
 import java.util.*;
 public class PerceivedTemperatureMain {
 public static void main(String[] args) {
 List<PerceivedTemperature> temps =
 new ArrayList<PerceivedTemperature>();
 temps.add(new PerceivedTemperature(104, 103));
 temps.add(new PerceivedTemperature(104, 101));
 temps.add(new PerceivedTemperature(88, 90));
 System.out.println(temps);
 }
 }

• Which produces the following output:
 [104 (103) degrees, 104 (101) degrees, 88 (90) degrees]

20

Some Client Code
• But what if we wanted to sort our list before printing?

• There’s a static method in the Java library called
Collections.sort that takes a list as a parameter

• But if we add the following line to our client code:
 Collections.sort(temps);

• We get a compiler error
–  we haven’t told Java how to sort PerceivedTemperatures!

21

Comparable<T>
•  If we want our class to be compatible with tools like
Arrays.sort and Collections.sort, we need to tell
Java how our class is ordered

•  Java provides the Comparable<T> interface:
 public interface Comparable<T> {
 public int compareTo(T other);
 }

• compareTo is not a method in Object because some
things aren’t comparable
–  when is one Scanner greater than another Scanner?
–  when is one Map less than another Map?

22

compareTo

• What does compareTo return?

•  Java’s convention is:
–  if compareTo returns a negative number, it means “less”
–  if compareTo returns a zero, it means “equal”
–  if compareTo returns a positive number, it means “greater”

• Some examples:
–  if x.compareTo(y) returns -7, then x < y
–  if x.compareTo(y) returns 0, then x == y
–  if x.compareTo(y) returns 37, then x > y

23

compareTo

•  For the PerceivedTemperature class, the single most
important piece of data is the perceived temperature

• We’ll use this to write an attempt of compareTo:
 public int compareTo(PerceivedTemperature other) {
 return pTemp - other.pTemp;
 }

• Notice that the above version works correctly
–  e.g. if pTemp < other.pTemp, it returns a negative number

• But what if the perceived temperatures are equal?
–  in this case, let’s break ties by the actual temperatures

24

compareTo
•  Final version of compareTo:

 public int compareTo(PerceivedTemperature other) {
 if (pTemp == other.pTemp)
 return aTemp - other.aTemp;
 else
 return pTemp - other.pTemp;
 }

• Now if we try to compile our client code...

•  ...we still get a compiler error! But why? We wrote a
correct compareTo!
–  we forgot to implement the Comparable interface

25

Implementing Comparable
• We need to have PerceivedTemperature implement the
Comparable interface:

 public class PerceivedTemperature implements
 Comparable<PerceivedTemperature> {
 ...
 }

• Remember: by implementing the interface we’re promising
Java that we’ve written a compareTo method. Only after
we make this promise will Java let us use
Collections.sort

Notice we have to say what it is
comparable to (namely, other
PerceivedTemperature objects)

26

Updated Client Code
• Here’s our updated our client code:
 import java.util.*;
 public class PerceivedTemperatureMain {
 public static void main(String[] args) {
 List<PerceivedTemperature> temps =
 new ArrayList<PerceivedTemperature>();
 temps.add(new PerceivedTemperature(104, 103));
 temps.add(new PerceivedTemperature(104, 101));
 temps.add(new PerceivedTemperature(88, 90));
 Collections.sort(temps);
 System.out.println(temps);
 }
 }

• Which now produces the following output:
 [88 (90) degrees, 104 (101) degrees, 104 (103) degrees]

27

compareTo and doubles
• Suppose PerceivedTemperature had stored its

temperatures as doubles instead of as ints.

• How would this affect compareTo?
–  compareTo is supposed to return an int, but now our

subtraction operations return doubles

• An attempt at fixing compareTo by casting to ints
 public int compareTo(PerceivedTemperature other) {
 if (pTemp == other.pTemp)
 return (int)(aTemp - other.aTemp);
 else
 return (int)(pTemp - other.pTemp);
 }

This doesn’t
always work!

28

compareTo and doubles
• Simple casting will return the wrong answer if the

difference between the two temperatures is both non-zero
and less than one
–  any difference strictly between -1.0 and 1.0 is converted to 0

• We need to check if the difference between the temperatures
is non-zero

• The easiest way to do this is with > and <
–  e.g. if (pTemp > other.pTemp)

29

compareTo and doubles
• One solution (assuming temperatures are doubles):
 public int compareTo(PerceivedTemperature other) {
 if (pTemp == other.pTemp)
 return compareDoubles(aTemp, other.aTemp);
 else
 return compareDoubles(pTemp, other.pTemp);
 }

 private int compareDoubles(double d1, double d2) {
 if (d1 < d2)
 return -1;
 else if (d1 > d2)
 return 1;
 else
 return 0;
 }

