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Binary Search Tree (BST) 
• Binary search tree: a binary tree on which you can perform 

binary search 

•  For every subtree in a binary search tree, the following 
property holds: 

• Remember: this property holds for every subtree, not just     
for the overall root 

x 

values <= x values > x 

This is sometimes 
called the “binary 
search tree property” 
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Duplicate Values 
• We must handle duplicates somehow 

• We’re going to handle duplicates by putting them in the left 
subtree (as shown on the previous slide) 

• But there are also other options: 
–  we could choose to not allow duplicates in our tree 
–  we could choose to put the duplicates in the right subtree 

•  It doesn’t really matter which one we choose, so long as    
we’re consistent 
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BST of Names 
•  Let’s create a BST of names (Strings) 

• How will we compare one name to another? 

• One name is less than another when the former comes    
before the latter alphabetically 
–  so “A” < “B” 

• One name is greater than another when the former comes 
after the latter alphabetically 
–  so “B” > “A” 
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BST of Names 
•  Let’s start with an empty tree and add the following names     

in the given order: 
–  Peter, Michael, Kim, Morgan, Baron, and Toby 

Peter 
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BST of Names 
•  Let’s start with an empty tree and add the following names     

in the given order: 
–  Peter, Michael, Kim, Morgan, Baron, and Toby 

Peter 

Michael 
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BST of Names 
•  Let’s start with an empty tree and add the following names     

in the given order: 
–  Peter, Michael, Kim, Morgan, Baron, and Toby 

Peter 

Michael 

Kim 
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BST of Names 
•  Let’s start with an empty tree and add the following names     

in the given order: 
–  Peter, Michael, Kim, Morgan, Baron, and Toby 

Peter 

Michael 

Kim Morgan 
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BST of Names 
•  Let’s start with an empty tree and add the following names     

in the given order: 
–  Peter, Michael, Kim, Morgan, Baron, and Toby 

Peter 

Michael 

Kim Morgan 

Baron 
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BST of Names 
•  Let’s start with an empty tree and add the following names     

in the given order: 
–  Peter, Michael, Kim, Morgan, Baron, and Toby 

Peter 

Michael 

Kim Morgan 

Baron 

Toby 
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BST of Names 
• What’s the in-order traversal of this tree? 

–  Baron, Kim, Michael, Morgan, Peter, Toby 
–  notice that this is also sorted order! 

• Why does this happen? 

•  in-order traversal 
–  left subtree, current node, right subtree 

•  in-order traversal in a BST 
–  values <= current value, current value, values > current value 

left subtree right subtree current node 
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add 

•  Let’s write an add method that will preserve the binary    
search tree property 

    public void add(int value) { 
       ... 
    } 

•  Like most recursive tree methods, we’ll need a private      
helper method to keep track of our current node 

• We also know to use “x = change(x)” because we’re   
modifying the tree 
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add 

• Here’s our updated add method 

    public void add(int value) { 
       overallRoot = add(overallRoot, value); 
    } 

    private IntTreeNode add(IntTreeNode root, int value) { 
       ... 
    } 

• Now we have to write the rest of the code 
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add 

• What’s the simplest tree we could add a node to? 
–  the empty tree 
–  this is our base case 

•  For the empty tree, we’ll just return a new node 

• What about our recursive case(s)? 
–  if the value to add is less than or equal to the value of the   

current node 
•  ...add a new node to the left subtree 

–  if the value to add is greater than the value of the current node 
•  ...add a new node to the right subtree 
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add 

• Here’s our completed add method 

    public void add(int value) { 
       overallRoot = add(overallRoot, value); 
    } 

    private IntTreeNode add(IntTreeNode root, int value) { 
       if (root == null) 
          root = new IntTreeNode(value); 
       else if (value <= root.data) 
          root.left = add(root.left, value); 
       else 
          root.right = add(root.right, value); 
       return root; 
    } 
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BST Wrap-up 
• We’ve seen that BSTs can handle different kinds of objects 

–  Strings are sorted alphabetically 
–  ints are sorted by non-decreasing value 

• Strings can be compared to other Strings 

• ints can be compared to other ints 

• So we could even define our own class to put in a BST, so   
long as we can compare different instances of this class 
–  you’ll have to write a class like this on your final 
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PerceivedTemperature 

•  Let’s write a simple class called PerceivedTemperature  
that keeps track of both the perceived temperature and    
actual temperature. 

• Constructor code 
    public class PerceivedTemperature { 
       private int pTemp; 
       private int aTemp; 

       public class PerceivedTemperature(int pt, int at) { 
          pTemp = pt; 
          aTemp = at; 
       } 
    } 
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PerceivedTemperature 

•  Let’s also give it a few more simple methods 

    public int getPerceivedTemperature() { 
       return pTemp; 
    } 

    public int getActualTemperature() { 
       return aTemp; 
    } 

    public String toString() { 
       return pTemp + “ (“ + aTemp + “) “ + degrees; 
    } 

•  It’s still a simple class, but now it has some functionality 
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Some Client Code 
•  Let’s also make some simple client code 
    import java.util.*; 
    public class PerceivedTemperatureMain { 
       public static void main(String[] args) { 
          List<PerceivedTemperature> temps = 
                new ArrayList<PerceivedTemperature>(); 
          temps.add(new PerceivedTemperature(104, 103)); 
          temps.add(new PerceivedTemperature(104, 101)); 
          temps.add(new PerceivedTemperature(88, 90)); 
          System.out.println(temps); 
       } 
    } 

• Which produces the following output: 
    [104 (103) degrees, 104 (101) degrees, 88 (90) degrees] 
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Some Client Code 
• But what if we wanted to sort our list before printing? 

• There’s a static method in the Java library called 
Collections.sort that takes a list as a parameter 

• But if we add the following line to our client code: 
    Collections.sort(temps); 

• We get a compiler error 
–  we haven’t told Java how to sort PerceivedTemperatures! 
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Comparable<T> 
•  If we want our class to be compatible with tools like 
Arrays.sort and Collections.sort, we need to tell   
Java how our class is ordered 

•  Java provides the Comparable<T> interface: 
    public interface Comparable<T> { 
       public int compareTo(T other); 
    } 

• compareTo is not a method in Object because some     
things aren’t comparable 
–  when is one Scanner greater than another Scanner? 
–  when is one Map less than another Map? 
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compareTo 

• What does compareTo return? 

•  Java’s convention is: 
–  if compareTo returns a negative number, it means “less” 
–  if compareTo returns a zero, it means “equal” 
–  if compareTo returns a positive number, it means “greater” 

• Some examples: 
–  if x.compareTo(y) returns -7, then x < y 
–  if x.compareTo(y) returns 0, then x == y 
–  if x.compareTo(y) returns 37, then x > y 
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compareTo 

•  For the PerceivedTemperature class, the single most 
important piece of data is the perceived temperature 

• We’ll use this to write an attempt of compareTo: 
    public int compareTo(PerceivedTemperature other) { 
       return pTemp - other.pTemp; 
    } 

• Notice that the above version works correctly 
–  e.g. if pTemp < other.pTemp, it returns a negative number 

• But what if the perceived temperatures are equal? 
–  in this case, let’s break ties by the actual temperatures 
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compareTo 
•  Final version of compareTo: 

    public int compareTo(PerceivedTemperature other) { 
       if (pTemp == other.pTemp) 
          return aTemp - other.aTemp; 
       else 
          return pTemp - other.pTemp; 
    } 

• Now if we try to compile our client code... 

•  ...we still get a compiler error!  But why?  We wrote a       
correct compareTo! 
–  we forgot to implement the Comparable interface 
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Implementing Comparable 
• We need to have PerceivedTemperature implement the 
Comparable interface: 

    public class PerceivedTemperature implements 
          Comparable<PerceivedTemperature> { 
       ... 
    } 

• Remember: by implementing the interface we’re promising 
Java that we’ve written a compareTo method.  Only after    
we make this promise will Java let us use   
Collections.sort 

Notice we have to say what it is 
comparable to (namely, other 
PerceivedTemperature objects) 
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Updated Client Code 
• Here’s our updated our client code: 
    import java.util.*; 
    public class PerceivedTemperatureMain { 
       public static void main(String[] args) { 
          List<PerceivedTemperature> temps = 
                new ArrayList<PerceivedTemperature>(); 
          temps.add(new PerceivedTemperature(104, 103)); 
          temps.add(new PerceivedTemperature(104, 101)); 
          temps.add(new PerceivedTemperature(88, 90)); 
          Collections.sort(temps); 
          System.out.println(temps); 
       } 
    } 

• Which now produces the following output: 
    [88 (90) degrees, 104 (101) degrees, 104 (103) degrees] 
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compareTo and doubles 
• Suppose PerceivedTemperature had stored its 

temperatures as doubles instead of as ints. 

• How would this affect compareTo? 
–  compareTo is supposed to return an int, but now our 

subtraction operations return doubles 

• An attempt at fixing compareTo by casting to ints 
    public int compareTo(PerceivedTemperature other) { 
       if (pTemp == other.pTemp) 
          return (int)(aTemp - other.aTemp); 
       else 
          return (int)(pTemp - other.pTemp); 
    } 

This doesn’t 
always work! 
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compareTo and doubles 
• Simple casting will return the wrong answer if the      

difference between the two temperatures is both non-zero    
and less than one 
–  any difference strictly between -1.0 and 1.0 is converted to 0 

• We need to check if the difference between the temperatures 
is non-zero 

• The easiest way to do this is with > and < 
–  e.g. if (pTemp > other.pTemp) 
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compareTo and doubles 
• One solution (assuming temperatures are doubles): 
    public int compareTo(PerceivedTemperature other) { 
       if (pTemp == other.pTemp) 
          return compareDoubles(aTemp, other.aTemp); 
       else 
          return compareDoubles(pTemp, other.pTemp); 
    } 

    private int compareDoubles(double d1, double d2) { 
       if (d1 < d2) 
          return -1; 
       else if (d1 > d2) 
          return 1; 
       else 
          return 0;  
    } 


