
CSE 143
Lecture 12

Inheritance

slides created by Ethan Apter
http://www.cs.washington.edu/143/

2

Intuition: Employee Types
• Consider this (partial) hierarchy of employee types:

• What kind of tasks can each employee type perform?

Employee

Clerical Professional

Secretary

Legal Secretary

Lawyer Engineer

3

Intuition: Employee Types
• What tasks should all employees be able to do?

–  show up for work
–  work
–  collect paychecks

• What tasks can a lawyer do that an engineer cannot?
–  sue
–  file legal briefs

• Which kind of secretary (regular or legal) can accomplish
a greater variety of tasks?
–  legal secretaries can do all regular secretarial work and

have special training for additional tasks

4

Intuition: Employee Training

• On your first day at work, you’ll likely receive some
general training for your new job

•  If it’s a big company (like Microsoft), you’ll likely receive
this with many other types of employees
–  engineers, business people, lawyers, etc

• After this general training, you’ll probably receive some
specialized training
–  “I know yesterday they told you to fill out your time-card on

the white sheet, but here we do it online instead”

• We call this kind of replacement overriding
–  the new behavior overrides/replaces the old behavior

5

Inheritance Overview
•  Java does something similar with inheritance

•  If we want to show an inheritance relationship between
two classes, we use the extends keyword:

 public class B extends A {
 ...
 }

• Which sets up the following inheritance hierarchy:

A

B

superclass

subclass

6

Superclasses and Subclasses

•  In the previous example, A is the superclass of B (A is above
B on the hierarchy), and B is a subclass of A (B is below A on
the hierarchy)

• This wording is somewhat different from standard English:

• So, a “super bacon cheeseburger” is just a hamburger
–  that doesn’t seem right: it’s missing bacon and cheese!
–  but that’s how inheritance works

hamburger

bacon cheeseburger

superclass

subclass

7

Base and Derived Classes
• We also say A is the base class of B, and B is a

derived class of A

• This makes a little more sense:

• A hamburger provides the basic form of a bacon
cheeseburger. Alternately, a bacon cheeseburger is a
hamburger with minor additions

hamburger

bacon cheeseburger

base class

derived class

8

Extending Object
• Consider the class A that we’ve been discussing:
 public class A {
 ...
 }

• We didn’t write that A extends anything, but it
automatically extends Object:

• All the classes you’ve written so far extend Object

A

B

Object This diagram is more
complete than before.
However, we often don’t
draw Object because we
know it must be there

9

Object

• Object is a very general class

• Since every class must extend Object, either directly
like A or indirectly like B, Object must have only state
and behavior that is needed by every class:
–  equals
–  toString

• this is where the weird default toString comes from

–  and more (but we won’t bother with the others)

• Why doesn’t Object contain a compareTo method?

10

Why Use Inheritance?
•  Inheritance allows us to reuse code we’ve already written

–  this makes it a powerful tool

•  Inheritance also allows us to express the core relationship
between different classes

• Subclasses allow us to do two things:
–  add new state and behavior (fields and methods)

• useful when a superclass has most of the needed state
and behavior

–  override inherited methods
• useful when you need to modify the way an inherited

method functions

11

Substituting
• When can we substitute one object for another?

• Recall our employee hierarchy:

Employee

Clerical Professional

Secretary

Legal Secretary

Lawyer Engineer

most simple
and generic

most complex
and specific

12

Substituting
• We can always substitute a more specific object for

a less specific one. With inheritance, we call this an
“is-a” relationship
–  a lawyer is-a professional employee is-an employee

• a lawyer can substitute for an employee, etc

–  a legal secretary is-a secretary is-a clerical employee
is-an employee
• a legal secretary can substitute for a secretary, etc

• You can see the is-a relationship by moving up the
inheritance hierarchy

•  It’s not ok to substitute across the hierarchy
–  a secretary is NOT a lawyer and can’t substitute for one

13

Substituting
• Recall our classes B and A (B extends A)

• Obviously we can do this:

 A x = new A();
 B y = new B();

• But what if the variable type and object type don’t match?

 A x = new B();
 B y = new A();

variable type object type

perfectly fine

not good!

14

Substituting
• But, what does it mean when the variable type doesn’t

match the object type?

 A x = new B();

• We are limited to the behaviors of the variable type
–  for x above, we are limited to using only methods defined

for class A (which may be inherited from Object)

• When executed, the methods will behave as defined in
the object type
–  for x above, the methods will execute as defined in B

(which may be inherited from A or Object)

15

Casting
• Suppose that:

–  you’re an unemployed legal secretary
–  you know that legal secretaries earn $20 an hour
–  you know that generic secretaries earn $15 an hour
–  you accept a job as a generic secretary for $15 an hour

• So far, this is fine (just not ideal)

• But what if:
–  your employer discovers that you’re a legal secretary
–  ...and wants you to do legal secretary work
–  ...for just $15 an hour?

•  Is that ok?

16

Casting
• No, it’s not ok!

•  If he wants you to do legal secretary work, he can
renegotiate your contract to reflect this
–  and pay you $20 an hour

•  Java lets us do something similar when we class cast
–  the class cast essentially renegotiates the contract

 Secretary you = new LegalSecretary();
 LegalSecretary youWithRaise = (LegalSecretary)you;

cast

17

Exercise: Inheritance Mystery

•  4-5 classes with inheritance relationships are shown
–  the class names won’t make sense (inheritance mystery)

• A client program calls methods on objects of each class
–  some questions involve casting
–  some lines of code are illegal and produce errors

• You must read the code and determine what it does
–  if it produces output, you must be precise
–  if it produces an error, you need to specify what kind of

error (either a compiler error or a runtime error)

• A similar problem will be on your midterm!

18

Exercise: Inheritance Mystery

•  Assume that the following classes have been declared:

 public class Fog extends Sleet {
 public void method1() {
 System.out.println("Fog 1");
 }

 public void method3() {
 System.out.println("Fog 3");
 }
 }

 public class Rain extends Snow {
 public void method1() {
 System.out.println("Rain 1");
 }

 public void method2() {
 System.out.println("Rain 2");
 }
 }

19

Exercise: Inheritance Mystery

 public class Sleet extends Snow {
 public void method2() {
 System.out.println("Sleet 2");
 super.method2();
 method3();
 }

 public void method3() {
 System.out.println("Sleet 3");
 }
 }

 public class Snow {
 public void method2() {
 System.out.println("Snow 2");
 }

 public void method3() {
 System.out.println("Snow 3");
 }
 }

20

Technique: Diagramming

•  First, determine the inheritance hierarchy:

Snow

Object

Sleet

Fog

Rain

21

•  ...and determine where methods are defined and inherited

Technique: Diagramming

Object

Snow

method2
method3

Rain

method1
method2

(method3)

Sleet

method2
method3

Fog

method1
(method2)
method3

22

Method Calls
•  Let’s look a little closer at Sleet’s method2():

 public class Sleet extends Snow {
 public void method2() {
 System.out.println("Sleet 2");
 super.method2();
 method3();
 }
 ...
 }

• super is a Java keyword to look to the super class
–  so super.method2() is like saying Snow.method2()
–  super is static: it always refers to Snow’s methods

• however, the call on method3 is dynamic
–  it always runs the current version of method3, because it’s

possible that another subclass can redefine method3

23

•  Then, figure out the behaviors of each type of object

Technique: Behavior Table

method Snow Rain Sleet Fog
method1 --- Rain 1 --- Fog 1

method2 Snow 2 Rain 2 Sleet 2
Snow 2
method3()

Sleet 2
Snow 2
method3()

method3 Snow 3 Snow 3 Sleet 3 Fog 3

Italics - inherited behavior
Circled - dynamic method call

24

Exercise

What happens when the following examples are executed?

•  Example 1 (letter a on handout #15):
 Snow var1 = new Sleet();
 var1.method3();

•  Example 2 (letter c on handout #15):

 Snow var1 = new Sleet();
 var1.method2();

•  Example 3 (letter o on handout #15):

 Snow var3 = new Fog();
 ((Sleet)var3).method1();

•  Example 4 (letter m on handout #15):

 Snow var3 = new Fog();
 ((Rain)var3).method1();

25

Example 1
•  Problem:

 Snow var1 = new Sleet();
 var1.method3();

• Output: object

variable

Sleet 3

Snow

method2
method3

Rain

method1
method2

(method3)

Sleet

method2
method3

Fog

method1
(method2)
method3

26

Example 2
•  Problem:

 Snow var1 = new Sleet();
 var1.method2();

• Output:

Sleet 2
Snow 2
Sleet 3

Snow

method2
method3

Rain

method1
method2

(method3)

Sleet

method2
method3

Fog

method1
(method2)
method3

variable

object

27

Example 3
•  Problem:

 Snow var3 = new Fog();
 ((Sleet)var3).method1();

• Output: variable

No output!
Compiler error!
Sleet doesn’t have a
method1()!

Snow

method2
method3

Rain

method1
method2

(method3)

Sleet

method2
method3

Fog

method1
(method2)
method3

object

28

Example 4
•  Problem:

 Snow var3 = new Fog();
 ((Rain)var3).method1();

• Output: variable

No output!
Runtime error!
A Fog is not a Rain!

Snow

method2
method3

Rain

method1
method2

(method3)

Sleet

method2
method3

Fog

method1
(method2)
method3

object

29

Solving Inheritance Mystery
•  Steps to solving inheritance mystery:

1.  Look at the variable type (if there is a cast, look at the
casted variable type). If the variable type does not have
the requested method the compiler will report an error.

2.  If there was a cast, make sure the casted variable type is
compatible with the object type (i.e. ensure the object type
is a subclass of the variable type). If they are not compatible,
a runtime error (ClassCastException) will occur.

3.  Execute the method in question, behaving like the object
type (the variable type and casted variable type no longer
matter at all)

30

Solutions to Handout #15
• Solutions for letters a through j:

Letter Code Output
a var1.method1(); compiler error

b var2.method1(); Rain 1

c var1.method2(); Sleet 2/Snow 2/Sleet 3

d var2.method2(); Rain 2

e var3.method2(); Sleet 2/Snow 2/Fog 3

f var4.method2(); compiler error

g var5.method2(); Sleet 2/Snow 2/Fog 3

h var1.method3(); Sleet 3

i var2.method3(); Snow 3

j var3.method3(); Fog 3

31

Solutions to Handout #15
• Solutions for letters k through t:

Letter Code Output
k var4.method3(); compiler error

l var5.method3(); Fog 3

m ((Rain)var3).method1(); runtime error

n ((Fog)var5).method1(); Fog 1

o ((Sleet)var3).method1(); compiler error

p ((Sleet)var3).method3(); Fog 3

q ((Fog)var6).method3(); runtime error

r ((Snow)var4).method2(); Snow 2

s ((Sleet)var4).method3(); runtime error

t ((Rain)var6).method3(); Snow 3

