
CSE 143
Lecture 19

Programming with inheritance

slides created by Alyssa Harding

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Inheritance

• We’ve seen how the mechanics of inheritance work

• We remember some things about extending classes,
super calls, and inherited methods

– ...right?

• Now we’re going to see how we can program with
inheritance to make our lives easier

3

Example: StutterList

• We want a class that has all the functionality
of ArrayList but adds everything twice

• For instance, the following code

StutterList<String> s =

new StutterList<String>();

s.add(“hello”);

System.out.println(s);

outputs

[“hello”,”hello”]

4

Example: StutterList

• How would we do this?

• We could write an entirely new class by
copying and pasting the ArrayList<E> code

– But that’s redundant

• We could change the ArrayList<E> code to

include our new functionality

– But this is invasive change

– It would ruin any code that depended on
the original functionality

5

Example: StutterList

• We want additive, not invasive, change!

• Instead, we just want to add onto the ArrayList<E>

• We want to extend its functionality using inheritance:

public class StutterList<E>

extends ArrayList<E> {

}

6

Example: StutterList

• Now we override the old add method to include

our stutter functionality:

public class StutterList<E>

extends ArrayList<E> {

public boolean add(E value) {

super.add(value);

super.add(value);

return true;

}

}
Instead of worrying about the details, we can use

the super class’s add method

7

Example: TranslatePoint

• Or maybe we want a Point that keeps track of how many

times it has been translated:

public class TranslatePoint extends Point {

private int count;

}

We need a field to keep track of our new state, but we
rely on the Point class to keep track of the regular state

8

Example: TranslatePoint

• We then need to override the translate method to update

our new state while still keeping the old functionality:

public void translate(int x, int y) {

count++;

super.translate(x,y);

}

We need to make sure we call the super class’ method,
otherwise we would have infinite recursion!

9

Example: TranslatePoint

• We can also add more functionality to the class:

public int getTranslateCount() {

return count;

}

10

Example: TranslatePoint

• We still need to think about constructors.

• Constructors are not inherited like the rest of the methods.

• Even when we don’t specify one, Java automatically includes
an empty, zero-argument constructor:

public TranslatePoint() {

// do nothing

} But it doesn’t actually do nothing...

11

Example: TranslatePoint

• Java needs to construct a TranslatePoint, so it at least
needs to construct a Point

• It automatically includes a call on the super class’ constructor:

public TranslatePoint() {

super();

}

We can use the super() notation to call the super class’
constructor just like we use the this() notation to call

this class’ constructor

12

Example: TranslatePoint

• But we want to be able to specify coordinates, so we will need
to make a constructor

• The first thing we need to do is include a call on the super
class’ constructor:

public TranslatePoint(int x, int y) {

super(x,y);

count = 0;

}

13

Example: TranslatePoint

• Now that we have a constructor, Java won’t automatically give
us a zero-argument constructor

• Since we still want one, we have to explicitly program it:

public TranslatePoint() {

this(0,0);

}

14

Inheritance Recap

• Fields. What additional information do you need to keep
track of?

• Constructors. If you want a constructor that takes
parameters, you have to create one and call the super
class’ constructor in it.

• Overridden methods. What methods affect the new
state? These need to be overridden. Again, call the
super method when you need to accomplish the old task.

• Added methods. What new behavior does your class
need?

15

Graphics

• Another useful application:
graphical user interfaces (GUIs)

• Think of all the different programs on your computer. You
wouldn’t want to code each type of window, textbox,
scrollbar individually!

• Java includes basic graphical classes that we can extend to
add more functionality

• Here’s the API documentation for a frame:
http://java.sun.com/javase/6/docs/api/java/awt/Frame.html

http://java.sun.com/javase/6/docs/api/java/awt/Frame.html

16

Graphics

• We can use this to customize our own type of frame:

public class FunFrame extends Frame {

public FunFrame() {

setVisible(true);

setSize(400, 400);

setTitle("Such fun!");

setBackground(Color.PINK);

}

}

17

Graphics

• We can also override other methods in the class:

public void paint(Graphics g) {

System.out.println("in paint");

}

• This will be called whenever the frame needs to be redrawn
on the screen

• Play around with more methods!

