
CSE 143
Lecture 22

Merge Sort

slides created by Ethan Apter
http://www.cs.washington.edu/143/

2

Some Sorting Algorithms
•  Insertion sort: add values to a sorted list so as to

maintain sorted order
–  the “sorted list” can originally be empty so that you can sort

many values
–  this is the sorting algorithm we used in SortedIntList

• Selection sort: scan an unsorted list for the smallest
value, and move the smallest value to the front. Repeat
this process for the remaining values until the whole list is
sorted

• Both insertion sort and selection sort are O(n2) algorithms

3

Merge Sort
• Merge sort:

–  divide a list into two halves
–  sort the halves
–  recombine the sorted halves into a sorted whole

• Merge sort is an example of a “divide and conquer” algorithm

• divide and conquer algorithm: an algorithm that
repeatedly divides the given problem into smaller pieces that
can be solved more easily
–  it’s easier to sort the two small lists than the one big list

4

Merge Sort Picture
0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

0 1 2 3 4 5 6 7

-4 7 12 18 22 31 42 58

22 18 12 -4

22 18

22

18 22

-4 12 18 22

12 -4

-4 12

18 12 -4

58 7 31 42

7 31 42 58

58 7 31 42

7 58 31 42

58 7 31 42

s
p
l
i
t

m
e
r
g
e

5

mergeInto

• Merge sort:
–  divide a list into two halves
–  sort the halves
–  recombine the sorted halves into a sorted whole

• We’re going to write the following method:
 // post: copies the values from list1 and list2
 // into result so that the values in result
 // are in sorted order
 private static void mergeInto(int[] result,
 int[] list1,
 int[] list2) {
 ...
 }

We’re going
to write this
part first

6

mergeInto

• So how do we actually merge the two sorted lists into one
sorted result list?

• One (wrong) way would just be to blindly copy the values
from the two sorted lists into the result list and then sort
the result list
–  this doesn’t take advantage of the fact that the two lists are

already sorted

•  Instead, we’ll repeatedly select the smallest value from
both sorted lists and put this value into the result list
–  because the two sorted lists are sorted, we know that their

smallest values are found at the front

7

mergeInto

• So to compare the smallest values, we’ll do something like this
 if (list1[0] <= list2[0])
 result[0] = list1[0];
 else
 result[0] = list2[0];

• Obviously, this only handles the very first value

• We need to use a loop and update our indexes in order to get
this working correctly

• But how many indexes do we need?

8

mergeInto Indexes
• We have three arrays, so we need three indexes

–  we need an index for list1, which tells us how many values
from list1 we’ve copied so far

–  we need an index for list2, which tells us how many values
from list2 we’ve copied so far

–  we need an index for result, which tells us how many values
total we’ve copied from list1 and list2
• we could just use the sum of the first two indexes for this index

• So we have the following indexes:
 int i1 = 0; // index for list1
 int i2 = 0; // index for list2
 int i = 0; // index for result (equals i1 + i2)

9

mergeInto

• So now we’ll update our previous code to use a loop and
our indexes

 int i1 = 0;
 int i2 = 0;
 for (int i = 0; i < result.length; i++) {
 if (list1[i1] <= list2[i2]) {
 result[i] = list1[i1];
 i1++;
 } else {
 result[i] = list2[i2];
 i2++;
 }
 }

But this doesn’t
quite work!

10

mergeInto
• Right now, our code always compares a value from list1 with a

value from list2

• But, because we’re coping a single value into result per loop
iteration, we’ll finish copying all the values from one of the
sorted lists before the other

• So we also need to check if we’ve copied all the values from
a list
–  if we’ve already copied all the values from list1, copy the value

from list2
–  if we’ve already copied all the values from list2, copy the value

from list1

11

mergeInto

• Updated mergeInto code:
 int i1 = 0;
 int i2 = 0;
 for (int i = 0; i < result.length; i++) {
 if (i2 >= list2.length || (i1 < list1.length &&
 list1[i1] <= list2[i2])) {
 result[i] = list1[i1];
 i1++;
 } else {
 result[i] = list2[i2];
 i2++;
 }
 }

• This code is finished (it just needs to be put inside the
method header)

This code is a little
subtle. It relies on the
short-circuiting property
of && and ||

12

mergeInto Final Code
 private static void mergeInto(int[] result,
 int[] list1,
 int[] list2) {
 int i1 = 0;
 int i2 = 0;
 for (int i = 0; i < result.length; i++) {
 if (i2 >= list2.length || (i1 < list1.length &&
 list1[i1] <= list2[i2])) {
 result[i] = list1[i1];
 i1++;
 } else {
 result[i] = list2[i2];
 i2++;
 }
 }
 }

13

mergeInto‘s Preconditions
• But notice our mergeInto method has some preconditions:

–  both list1 and list2 must already be sorted
–  result’s length must equal list1’s length plus list2’s

length

• Because this is a private method, we’re just going to settle
for only commenting these preconditions

• Updated comment:
 // pre: list1 and list2 are sorted
 // result.length == list1.length + list2.length
 // post: copies the values from list1 and list2
 // into result so that the values in result
 // are in sorted order

14

Merge Sort
• Recall that merge sort consists of the following steps:

–  divide a list into two halves
–  sort the halves
–  recombine the sorted halves into a sorted whole

• We’ve written the “recombine” step (mergeInto)
–  But now we have to write the first two steps

•  Let’s define our public sort method:
 // post: sorts the given array into non-decreasing order
 public static void sort(int[] list) {
 ...
 }

15

Dividing the List in Half
•  First we have to divide our list into two lists that are half the

size of the original list

• To do this, we need to create a place to store these two lists
–  we’ll create two new integer arrays

• A first attempt at creating the two new integer arrays:
 int[] list1 = new int[list.length / 2];
 int[] list2 = new int[list.length / 2];

• But what if the length of our array is odd?
–  e.g. if list.length == 1001, then list.length / 2 == 500

• and we’ll miss an element!

–  we need to handle the odd case

16

Dividing the List in Half
• Here’s some better code:
 int[] list1 = new int[list.length / 2];
 int[] list2 = new int[list.length - list.length / 2];

• And now we can also copy the first half of the list into list1
and the second half of the list into list2

• Here’s the code for copying the values
 for (int i = 0; i < list1.length; i++)
 list1[i] = list[i];
 for (int i = 0; i < list2.length; i++)
 list2[i] = list[i + list1.length];

17

Merge Sort
• So here’s our code for sort so far:
 public static void sort(int[] list) {
 int[] list1 = new int[list.length / 2];
 int[] list2 = new int[list.length - list.length / 2];
 for (int i = 0; i < list1.length; i++)
 list1[i] = list[i];
 for (int i = 0; i < list2.length; i++)
 list2[i] = list[i + list1.length];
 ...
 }

• So, we’ve successfully divided the list in half, and we’ve written
code that can merge two sorted lists
–  so we still have to sort the two halves

18

Sorting the Halves
• But how will we sort the two halves?

–  if only we had a method that could sort a list...
–  oh wait! That’s what we’re writing!

•  If we’re going to make our sort method recursive, we need to
modify it to have a base case
–  what’s an easy list to sort?

• the empty list (sorted by definition)
• the list with one element (sorted by definition)

• So if our sort is called on lists with size <= 1, we don’t have to
do anything

19

Sorting the Halves
• Modified sort to have a base case:
 public static void sort(int[] list) {
 if (list.length > 1) {
 int[] list1 = new int[list.length / 2];
 int[] list2 = new int[list.length - list.length / 2];
 for (int i = 0; i < list1.length; i++)
 list1[i] = list[i];
 for (int i = 0; i < list2.length; i++)
 list2[i] = list[i + list1.length];
 ...
 }
 }

• Now we can just call sort on the two halves (list1 and
list2), and we’ll eventually reach our base case

20

Sorting the Halves
• Modified sort that calls itself to sort the two halves:
 public static void sort(int[] list) {
 if (list.length > 1) {
 int[] list1 = new int[list.length / 2];
 int[] list2 = new int[list.length - list.length / 2];
 for (int i = 0; i < list1.length; i++)
 list1[i] = list[i];
 for (int i = 0; i < list2.length; i++)
 list2[i] = list[i + list1.length];
 sort(list1);
 sort(list2);
 ...
 }
 }

•  Finally, we just merge the two halves into the original list

21

sort Final Code
•  Final version of sort:
 public static void sort(int[] list) {
 if (list.length > 1) {
 int[] list1 = new int[list.length / 2];
 int[] list2 = new int[list.length - list.length / 2];
 for (int i = 0; i < list1.length; i++)
 list1[i] = list[i];
 for (int i = 0; i < list2.length; i++)
 list2[i] = list[i + list1.length];
 sort(list1);
 sort(list2);
 mergeInto(list, list1, list2);
 }
 }

22

Merge Sort is Stable
• Merge sort can be written so that it is a stable sort

•  stable sort: a sorting algorithm that maintains the relative
positions of equal elements
–  So, if there are multiple 3s in a list, a stable sort will put

• put the 3 that occurred first before the others
• put the 3 that occurred second after the first and before the others
•  ...
• the 3 that occurred last after the others

• And the way we’ve written merge sort makes it stable
–  because of how we divided our list into halves in sort
–  and because of how we break ties during the comparison of

values in mergeInto

23

Analyzing Our Performance
•  Let’s compare the performance of our merge sort to

Sun’s Arrays.sort

• Here’s a sample run from IntArraySorter.java (on the
website) run on a 2.53 GHz Intel Core 2 Duo Macbook

 This program compares the performance of the
 merge sort written in CSE 143 against the
 performance of Sun's Arrays.sort method by
 timing both methods on random, identical int
 arrays of length 2500000

 Sun's time: 0.507 seconds
 Our time: 1.135 seconds
 Ratio (Sun's/our): 2.24

24

Analyzing Our Performance
• Sun’s sort is faster than ours

–  but only by a factor of about 2.5

• That’s really good! It didn’t take us long to write this, and
Sun’s Arrays.sort is a professional sorting method

• Sun has had years to fine-tune the performance of Arrays.sort,
and yet we wrote a reasonably competitive merge sort in less
than an hour!

• So what’s the complexity of merge sort?

25

Complexity of Merge Sort
• To determine the time complexity, let’s break our merge

sort into pieces and analyze the pieces

• Remember, merge sort consists of:
–  divide a list into two halves
–  sort the halves
–  recombine the sorted halves into a sorted whole

• Dividing the list and recombining the lists are pretty easy
to analyze
–  both have O(n) time complexity

• But what about sorting the halves?

26

Complexity of Merge Sort
• We can think of merge sort as occurring in levels

–  at the first level, we want to sort the whole list
–  at the second level, we want to sort the two half lists
–  at the third level, we want to sort the four quarter lists
–  ...

• We know there’s O(n) work at each level from dividing/
recombining the lists

• But how many levels are there?
–  if we can figure this out, our time complexity is just

O(n * num_levels)

27

Complexity of Merge Sort
• Because we divide the array in half each time, there are log(n)

levels

• So merge sort is an O(n log(n)) algorithm
–  this is a big improvement over the O(n2) sorting algorithms

log(n)
levels

O(n) work at each level

