
CSE 143
Lecture 3

More ArrayList;

object-oriented programming

reading: 10.1; 8.1 - 8.7

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Out-of-bounds

• Legal indexes are between 0 and the list's size() - 1.

– Reading or writing any index outside this range will cause an
IndexOutOfBoundsException.

ArrayList<String> names = new ArrayList<String>();

names.add("Marty"); names.add("Kevin");

names.add("Vicki"); names.add("Larry");

System.out.println(names.get(0)); // okay

System.out.println(names.get(3)); // okay

System.out.println(names.get(-1)); // exception

names.add(9, "Aimee"); // exception

index 0 1 2 3

value Marty Kevin Vicki Larry

3

ArrayList "mystery"

ArrayList<Integer> list = new ArrayList<Integer>();

for (int i = 1; i <= 10; i++) {

list.add(10 * i); // [10, 20, 30, 40, ..., 100]

}

• What is the output of the following code?

for (int i = 0; i < list.size(); i++) {

list.remove(i);

}

System.out.println(list);

• Answer:

[20, 40, 60, 80, 100]

4

ArrayList "mystery" 2

ArrayList<Integer> list = new ArrayList<Integer>();

for (int i = 1; i <= 5; i++) {

list.add(2 * i); // [2, 4, 6, 8, 10]

}

• What is the output of the following code?

int size = list.size();

for (int i = 0; i < size; i++) {

list.add(i, 42); // add 42 at index i

}

System.out.println(list);

• Answer:

[42, 42, 42, 42, 42, 2, 4, 6, 8, 10]

5

ArrayList as parameter

public static void name(ArrayList<Type> name) {

• Example:
// Removes all plural words from the given list.

public static void removePlural(ArrayList<String> list) {

for (int i = 0; i < list.size(); i++) {

String str = list.get(i);

if (str.endsWith("s")) {

list.remove(i);

i--;

}

}

}

• You can also return a list:

public static ArrayList<Type> methodName(params)

6

Exercise

• Write a method addStars that accepts an array list of strings
as a parameter and places a * after each element.

– Example: if an array list named list initially stores:

[the, quick, brown, fox]

– Then the call of addStars(list); makes it store:

[the, *, quick, *, brown, *, fox, *]

• Write a method removeStars that accepts an array list of
strings, assuming that every other element is a *, and removes
the stars (undoing what was done by addStars above).

7

Exercise solution

public static void addStars(ArrayList<String> list) {

for (int i = 0; i < list.size(); i += 2) {

list.add(i, "*");

}

}

public static void removeStars(ArrayList<String> list) {

for (int i = 0; i < list.size(); i++) {

list.remove(i);

}

}

8

Exercise

• Write a method intersect that accepts two sorted array lists

of integers as parameters and returns a new list that contains
only the elements that are found in both lists.

– Example: if lists named list1 and list2 initially store:

[1, 4, 8, 9, 11, 15, 17, 28, 41, 59]

[4, 7, 11, 17, 19, 20, 23, 28, 37, 59, 81]

– Then the call of intersect(list1, list2) returns the list:

[4, 11, 17, 28, 59]

9

Other Exercises

• Write a method reverse that reverses the order of the
elements in an ArrayList of strings.

• Write a method capitalizePlurals that accepts an
ArrayList of strings and replaces every word ending with an

"s" with its uppercased version.

• Write a method removePlurals that accepts an ArrayList

of strings and removes every word in the list ending with an
"s", case-insensitively.

Object-Oriented
Programming

reading: 8.1 - 8.7

11

Classes and objects

• class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

• object: An entity that combines state and behavior.

– object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

– abstraction: Separation between concepts and details.

Objects provide abstraction in programming.

12

Blueprint analogy

iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

13

Clients of objects

• client program: A program that uses objects.

– Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)

public class Bomb {

main(String[] args) {

new DrawingPanel(...)

new DrawingPanel(...)

...

}

}

DrawingPanel.java (class)

public class DrawingPanel {

...

}

14

Fields

• field: A variable inside an object that is part of its state.

– Each object has its own copy of each field.

• Declaration syntax:

private type name;

– Example:

public class Point {

private int x;

private int y;

...

}

15

Instance methods

• instance method (or object method): A method inside
each object of a class that gives behavior to each object.

public type name(parameters) {

statements;

}

– same syntax as static methods, but without static keyword

Example:

public void translate(int dx, int dy) {

x = x + dx;

y = y + dy;

}

16

The implicit parameter

• implicit parameter:

The object on which an instance method is being called.

– If we have a Point object p1 and call p1.translate(5, 3);

the object referred to by p1 is the implicit parameter.

– If we have a Point object p2 and call p2.translate(4, 1);

the object referred to by p2 is the implicit parameter.

– The instance method can refer to that object's fields.

• We say that it executes in the context of a particular object.

•translate can refer to the x and y of the object it was called on.

17

Constructors

• constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

– runs when the client uses the new keyword

– no return type is specified; implicitly "returns" the new object

public class Point {

private int x;

private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

18

BankAccount exercise

• Suppose we have a class BankAccount with the methods:

public BankAccount(int id)

public void deposit(double amount)

public void withdraw(double amount)

public double getBalance()

public int getID()

• How would we make each account object keep a log of all
deposit/withdrawal transactions?

– Desired: a printLog method that shows all transactions so far.

Deposit of $7.84

Withdrawal of $2.53

Deposit of $6.19

19

Objects storing collections

• An object can have an array, list, or other collection as a field.

public class Course {

private double[] grades;

private ArrayList<String> studentNames;

public Course() {

grades = new double[4];

studentNames = new ArrayList<String>();

...

}

• Now each object stores a collection of data inside it.

