
Higher Order Functions

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

2

Functions as parameters

•  Have you ever wanted to pass an entire function as a
parameter

•  Python has functions as first-class citizens, so you can do
this

•  You simply pass the functions by name

3

Higher-Order Functions

•  A higher-order function is a function that takes another
function as a parameter

•  They are “higher-order” because it’s a function of a function
•  Examples

–  Map
–  Reduce
–  Filter

•  Lambda works great as a parameter to higher-order
functions if you can deal with its limitations

4

Map

 map(function, iterable, ...)

•  Map applies function to each element of iterable
and creates a list of the results

•  You can optionally provide more iterables as
parameters to map and it will place tuples in the
result list

•  Map returns an iterator which can be cast to list

5

Map Example

Example

1
2
3
4
5
6
7

nums = [0, 4, 7, 2, 1, 0 , 9 , 3, 5, 6, 8, 0, 3]

nums = list(map(lambda x : x % 5, nums))

print(nums)
#[0, 4, 2, 2, 1, 0, 4, 3, 0, 1, 3, 0, 3]

6

Map Problem
Goal: given a list of three dimensional points in the

form of tuples, create a new list consisting of the
distances of each point from the origin

Loop Method:
 - distance(x, y, z) = sqrt(x**2 + y**2 + z**2)
 - loop through the list and add results to a new list

7

Map Problem

Solution

1
2
3
4
5
6
7
8
9

from math import sqrt

points = [(2, 1, 3), (5, 7, -3), (2, 4, 0), (9, 6, 8)]

def distance(point) :
 x, y, z = point
 return sqrt(x**2 + y**2 + z**2)

distances = list(map(distance, points))

8

Filter

 filter(function, iterable)

•  The filter runs through each element of iterable (any
iterable object such as a List or another collection)

•  It applies function to each element of iterable
•  If function returns True for that element then the

element is put into a List
•  This list is returned from filter in versions of python under

3
•  In python 3, filter returns an iterator which must be cast

to type list with list()

9

Filter Example

Example

1
2
3
4
5
6

nums = [0, 4, 7, 2, 1, 0 , 9 , 3, 5, 6, 8, 0, 3]

nums = list(filter(lambda x : x != 0, nums))

print(nums) #[4, 7, 2, 1, 9, 3, 5, 6, 8, 3]

10

Filter Problem
NaN = float("nan")
scores = [[NaN, 12, .5, 78, math.pi],

 [2, 13, .5, .7, math.pi / 2],
 [2, NaN, .5, 78, math.pi],

 [2, 14, .5, 39, 1 - math.pi]]

Goal: given a list of lists containing answers to an

algebra exam, filter out those that did not submit a
response for one of the questions, denoted by NaN

11

Filter Problem
Solution

1
2
3
4
5
6
7
8
9
0
1
2
3
4

NaN = float("nan")
scores = [[NaN, 12, .5, 78, pi],[2, 13, .5, .7, pi / 2],
 [2,NaN, .5, 78, pi],[2, 14, .5, 39, 1 - pi]]
#solution 1 - intuitive
def has_NaN(answers) :
 for num in answers :
 if isnan(float(num)) :
 return False
 return True

valid = list(filter(has_NaN, scores))
print(valid2)
#Solution 2 – sick python solution
valid = list(filter(lambda x : NaN not in x, scores))
print(valid)

12

Reduce
reduce(function, iterable[,initializer])

•  Reduce will apply function to each element in iterable
along with the sum so far and create a cumulative sum of the
results

•  function must take two parameters
•  If initializer is provided, initializer will stand as the first

argument in the sum
•  Unfortunately in python 3 reduce() requires an import

statement
•  from functools import reduce

13

Reduce Example

Example

1
2
3
4
5
6
7

nums = [1, 2, 3, 4, 5, 6, 7, 8]

nums = list(reduce(lambda x, y : (x, y), nums))

Print(nums) #(((((((1, 2), 3), 4), 5), 6), 7), 8)

14

Reduce Problem
Goal: given a list of numbers I want to find the

average of those numbers in a few lines using
reduce()

For Loop Method:
 - sum up every element of the list
 - divide the sum by the length of the list

15

Reduce Problem

Solution

1

2
3
4

nums = [92, 27, 63, 43, 88, 8, 38, 91, 47, 74, 18, 16,
 29, 21, 60, 27, 62, 59, 86, 56]

sum = reduce(lambda x, y : x + y, nums) / len(nums)

16

MapReduce
A framework for processing huge datasets on certain
kinds of distributable problems

Map Step:

 - master node takes the input, chops it up into
 smaller sub-problems, and distributes those to
 worker nodes.
 - worker node may chop its work into yet small
 pieces and redistribute again

17

MapReduce
Reduce Step:

 - master node then takes the answers to all the
 sub-problems and combines them in a way to
 get the output

18

MapReduce

Problem: Given an email how do you tell if it is spam?

 - Count occurrences of certain words. If they
 occur too frequently the email is spam.

19

MapReduce

map_reduce.py

1
2
3
4
5

6
7
8
9

10

email = ['the', 'this', 'annoy', 'the', 'the', 'annoy']

def inEmail (x):
 if (x == "the"):
 return 1;
 else:
 return 0;

map(inEmail, l) #[1, 0, 0, 0, 1, 1, 0]

reduce((lambda x, xs: x + xs), map(inEmail, email)) #3

