
CSE 143
Lecture 9

More Linked Lists

reading: 16.2 - 16.3

slides created by Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/

2

Implementing remove

// Removes value at given index from list.

// Precondition: 0 <= index < size

public void remove(int index) {

...
}

– How do we remove any node in general from a list?

– Does it matter what the list's contents are before the remove?

3

Removing from a list

• Before removing element at index 1:

• After:

front = 42

nextdata

20

nextdata

front = 42

nextdata

-3

nextdata

20

nextdata

element 0 element 1 element 2

element 0 element 1

4

Removing from the front

• Before removing element at index 0:

• After:

front = -3

nextdata

20

nextdata

front = 42

nextdata

-3

nextdata

20

nextdata

element 0 element 1 element 2

element 0 element 1

5

Removing the only element

• Before: After:

– We must change the front field to store null instead of a node.

– Do we need a special case to handle this?

front = front = 20

nextdata

element 0

6

remove solution

// Removes value at given index from list.

// Precondition: 0 <= index < size()

public void remove(int index) {

if (index == 0) {

// special case: removing first element

front = front.next;

} else {

// removing from elsewhere in the list

ListNode current = front;

for (int i = 0; i < index - 1; i++) {

current = current.next;

}

current.next = current.next.next;

}

}

7

Exercise: addSorted

• Write a method addSorted that accepts an integer value as a
parameter and adds that value to a sorted list in sorted order.

– Before addSorted(17) :

– After addSorted(17) :

front =
-4

nextdata

8

nextdata

22

nextdata

element 0 element 1 element 2

front =
-4

nextdata

17

nextdata

22

nextdata

element 0 element 2 element 3

8

nextdata

element 1

8

The common case

• Adding to the middle of a list:
addSorted(17)

– Which references must be changed?

– What sort of loop do we need?

– When should the loop stop?

front =
-4

nextdata

8

nextdata

22

nextdata

element 0 element 1 element 2

9

First attempt

• An incorrect loop:

ListNode current = front;

while (current.data < value) {

current = current.next;

}

• What is wrong with this code?
– The loop stops too late to affect the list in the right way.

front =
-4

nextdata

8

nextdata

22

nextdata

element 0 element 1 element 2

current

10

Key idea: peeking ahead

• Corrected version of the loop:

ListNode current = front;

while (current.next.data < value) {

current = current.next;

}

– This time the loop stops in the right place.

front =
-4

nextdata

8

nextdata

22

nextdata

element 0 element 1 element 2

current

11

Another case to handle

• Adding to the end of a list:
addSorted(42)

Exception in thread "main": java.lang.NullPointerException

– Why does our code crash?

– What can we change to fix this case?

front =
-4

nextdata

8

nextdata

22

nextdata

element 0 element 1 element 2

12

Multiple loop tests

• A correction to our loop:

ListNode current = front;

while (current.next != null &&

current.next.data < value) {

current = current.next;

}

– We must check for a next of null before we check its .data.

front =
-4

nextdata

8

nextdata

22

nextdata

element 0 element 1 element 2

current

13

Third case to handle

• Adding to the front of a list:
addSorted(-10)

– What will our code do in this case?

– What can we change to fix it?

front =
-4

nextdata

8

nextdata

22

nextdata

element 0 element 1 element 2

14

Handling the front

• Another correction to our code:

if (value <= front.data) {

// insert at front of list

front = new ListNode(value, front);

} else {

// insert in middle of list

ListNode current = front;

while (current.next != null &&

current.next.data < value) {

current = current.next;

}

}

– Does our code now handle every possible case?

15

Fourth case to handle

• Adding to (the front of) an empty list:
addSorted(42)

– What will our code do in this case?

– What can we change to fix it?

front =

16

Final version of code

// Adds given value to list in sorted order.

// Precondition: Existing elements are sorted

public void addSorted(int value) {

if (front == null || value <= front.data) {

// insert at front of list

front = new ListNode(value, front);

} else {

// insert in middle of list

ListNode current = front;

while (current.next != null &&

current.next.data < value) {

current = current.next;

}

}

}

17

Other list features

• Add the following methods to the LinkedIntList:

– size

– isEmpty

– clear

– toString

– indexOf

– contains

• Add a size field to the list to return its size more efficiently.

• Add preconditions and exception tests to appropriate methods.

18

Abstract data types

• abstract data type (ADT): A specification of a collection of
data and the operations that can be performed on it.

– Describes what a collection does, not how it does it.

• Java's collection framework describes several ADTs:
– Collection, Deque, List, Map, Queue, Set

• An ADT can be implemented in multiple ways:
– ArrayList and LinkedList implement List

– HashSet and TreeSet implement Set

– LinkedList , ArrayDeque, etc. implement Queue

– Key idea: You can implement the same external behavior in
many different ways internally. Each has its pros and cons.

