
CSE 143
Lecture 24

Inheritance and the Object class; Polymorphism

read 9.2 - 9.4

slides created by Marty Stepp, Hélène Martin, and Ethan Apter

http://www.cs.washington.edu/143/

2

Recall: Inheritance

• inheritance: Forming new classes based on existing ones.

– superclass: Parent class being extended.

– subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

• override: To replace a superclass's method by writing a new
version of that method in a subclass.

public class Lawyer extends Employee {

// overrides getSalary in Employee; a raise!

public double getSalary() {

return 55000.00;

}

}

3

The super keyword

super.method(parameters)
super(parameters);

– Subclasses can call overridden methods/constructors with super

public class Lawyer extends Employee {

private boolean passedBarExam;

public Lawyer(int vacationDays, boolean bar) {

super(vacationDays * 2);

this.passedBarExam = bar;

}

public double getSalary() {

double baseSalary = super.getSalary();

return baseSalary + 5000.00; // $5K raise

}

...

}

4

The class Object

• The class Object forms the root of the
overall inheritance tree of all Java classes.
– Every class is implicitly a subclass of Object

• The Object class defines several methods
that become part of every class you write.
For example:

– public String toString()

Returns a text representation of the object,
usually so that it can be printed.

5

Object methods

– What does this list of methods tell you about Java's design?

text representation of objectpublic String toString()

methods related to
concurrency and locking (seen
later)

public void notify()

public void notifyAll()

public void wait()

public void wait(...)

a code suitable for putting this
object into a hash collection

public int hashCode()

info about the object's typepublic Class<?> getClass()

used for garbage collectionprotected void finalize()

returns whether two objects
have the same state

public boolean equals(Object o)

creates a copy of the objectprotected Object clone()

descriptionmethod

6

Using the Object class

• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

• You can write methods that accept an Object parameter.

public void checkNotNull(Object o) {

if (o != null) {

throw new IllegalArgumentException();

}

• You can make arrays or collections of Objects.

Object[] a = new Object[5];

a[0] = "hello";

a[1] = new Random();

List<Object> list = new ArrayList<Object>();

7

Recall: comparing objects

• The == operator does not work well with objects.

– It compares references, not objects' state.

– It produces true only when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

// p1.equals(p2)?

// p2.equals(p3)?

...

x 5 y 3p1

p2

...

x 5 y 3

p3

8

Default equals method

• The Object class's equals implementation is very simple:

public class Object {

...

public boolean equals(Object o) {

return this == o;

}

}

• However:

– When we have used equals with various objects, it didn't behave
like == . Why not? if (str1.equals(str2)) { ...

– The Java API documentation for equals is elaborate. Why?

9

Implementing equals

public boolean equals(Object name) {

statement(s) that return a boolean value ;

}

– The parameter to equals must be of type Object.

– Having an Object parameter means any object can be passed.

• If we don't know what type it is, how can we compare it?

10

Casting references

Object o1 = new Point(5, -3);

Object o2 = "hello there";

((Point) o1).translate(6, 2); // ok

int len = ((String) o2).length(); // ok

Point p = (Point) o1;

int x = p.getX(); // ok

• Casting references is different than casting primitives.
– Really casting an Object reference into a Point reference.

– Doesn't actually change the object that is referred to.

– Tells the compiler to assume that o1 refers to a Point object.

11

The instanceof keyword

if (variable instanceof type) {

statement(s);

}

• Asks if a variable refers
to an object of a given type.
– Used as a boolean test.

String s = "hello";

Point p = new Point();

falsenull instanceof Object

falsep instanceof String

truep instanceof Object

falsenull instanceof String

trues instanceof Object

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

12

equals method for Points

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.

public boolean equals(Object o) {

if (o instanceof Point) {

// o is a Point; cast and compare it

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

// o is not a Point; cannot be equal

return false;

}

}

13

More about equals

• Equality is expected to be reflexive, symmetric, and transitive:

a.equals(a) is true for every object a
a.equals(b) ↔ b.equals(a)

(a.equals(b) && b.equals(c)) ↔ a.equals(c)

• No non-null object is equal to null:

a.equals(null) is false for every object a

• Two sets are equal if they contain the same elements:

Set<String> set1 = new HashSet<String>();

Set<String> set2 = new TreeSet<String>();

for (String s : "hi how are you".split(" ")) {

set1.add(s); set2.add(s);

}

System.out.println(set1.equals(set2)); // true

14

The hashCode method

public int hashCode()

Returns an integer hash code for this object, indicating its
preferred to place it in a hash table / hash set.

– Allows us to store non-int values in a hash set/map:

public static int hashFunction(Object o) {

return Math.abs(o.hashCode()) % elements.length;

}

• How is hashCode implemented?

– Depends on the type of object and its state.
• Example: a String's hashCode adds the ASCII values of its letters.

– You can write your own hashCode methods in classes you write.

• All classes come with a default version based on memory address.

15

Polymorphism

16

Polymorphism

• polymorphism: Ability for the same code to be used with
different types of objects and behave differently with each.

• A variable or parameter of type T can refer to any subclass of T.

Employee ed = new Lawyer();

Object otto = new Secretary();

– When a method is called on ed, it behaves as a Lawyer.

– You can call any Employee methods on ed.
You can call any Object methods on otto.

• You can not call any Lawyer-only methods on ed (e.g. sue).
You can not call any Employee methods on otto (e.g. getHours).

17

Polymorphism examples

• You can use the object's extra functionality by casting.

Employee ed = new Lawyer();

ed.getVacationDays(); // ok

ed.sue(); // compiler error

((Lawyer) ed).sue(); // ok

• You can't cast an object into something that it is not.

Object otto = new Secretary();

System.out.println(otto.toString()); // ok

otto.getVacationDays(); // compiler error

((Employee) otto).getVacationDays(); // ok

((Lawyer) otto).sue(); // runtime error

18

"Polymorphism mystery"

• Figure out the output from all methods of these classes:
public class Snow {

public void method2() {
System.out.println("Snow 2");

}

public void method3() {
System.out.println("Snow 3");

}
}

public class Rain extends Snow {
public void method1() {

System.out.println("Rain 1");
}

public void method2() {
System.out.println("Rain 2");

}
}

19

"Polymorphism mystery"

public class Sleet extends Snow {
public void method2() {

System.out.println("Sleet 2");
super.method2();
method3();

}

public void method3() {
System.out.println("Sleet 3");

}
}

public class Fog extends Sleet {
public void method1() {

System.out.println("Fog 1");
}

public void method3() {
System.out.println("Fog 3");

}
}

20

Technique 1: diagram

• Diagram the classes from top (superclass) to bottom.

21

Technique 2: table

method Snow Rain Sleet Fog

method1

method2

method3

Italic - inherited behavior
Bold - dynamic method call

method Snow Rain Sleet Fog

method1 Rain 1 Fog 1

method2 Snow 2 Rain 2 Sleet 2

Snow 2

method3()

Sleet 2

Snow 2

method3()

method3 Snow 3 Snow 3 Sleet 3 Fog 3

22

Mystery problem, no cast

Snow var3 = new Rain();

var3.method2(); // What's the output?

• If the problem does not have any casting, then:

1. Look at the variable's type.
If that type does not have the method: ERROR.

2. Execute the method, behaving like the object's type.
(The variable type no longer matters in this step.)

23

Example 1

• What is the output of the following call?

Snow var1 = new Sleet();

var1.method2();

• Answer:

Sleet 2

Snow 2

Sleet 3

object

variable

24

Example 2

• What is the output of the following call?

Snow var2 = new Rain();

var2.method1();

• Answer:

ERROR
(because Snow does not
have a method1)

variable

object

25

Mystery problem with cast

Snow var2 = new Rain();

((Sleet) var2).method2(); // What's the output?

• If the problem does have a type cast, then:

1. Look at the cast type.
If that type does not have the method: ERROR.

2. Make sure the object's type is the cast type or is a subclass of
the cast type. If not: ERROR. (No sideways casts!)

3. Execute the method, behaving like the object's type.
(The variable / cast types no longer matter in this step.)

26

Example 3

• What is the output of the following call?

Snow var2 = new Rain();

((Rain) var2).method1();

• Answer:

Rain 1

variable

object
cast

27

Example 4

• What is the output of the following call?

Snow var2 = new Rain();

((Sleet) var2).method2();

• Answer:

ERROR
(because the object's
type, Rain, cannot
be cast into Sleet)

object cast

variable

