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OOP and Python

Python was built as a procedural language
– OOP exists and works fine, but feels a bit more "tacked 

on"

– Java probably does classes better than Python (gasp)
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Defining a Class

Declaring a class:

class Name:
    ...

– class name is capitalized (e.g. Point)

– saved into a file named name.py (filename is 
lowercase)
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Fields

Declaring a field:

name = value

– Example:

class Point:
    x = 0
    y = 0

point.py

1
2
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class Point:
    x = 0
    y = 0
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Using a Class

from name import *

– client programs must import the classes they use
– the file name (lowercase), not class name, is used

point_main.py
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from point import *

# main
p1 = Point()
p1.x = 7
p1.y = -3

...
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"Implicit" Parameter (self)
• Java object methods refer to the object's fields 

implicitly:

public void translate(int dx, int dy) {
    x += dx;
    y += dy;    // change this object's x/y
}

• Python's implicit parameter is named self
– self must be the first parameter of any object method
– access the object's fields as self.field

def translate(self, dx, dy):
    self.x += dx
    self.y += dy
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Methods
def name(self [, parameter, ..., parameter]):
    statements

– Example:
class Point:
    def translate(self, dx, dy):
        self.x += dx
        self.y += dy
    ...

– Exercise: Write the following methods in class Point:
• set_location
• draw
• distance
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Initializing Objects

• Right now, clients must initialize Points like this:

p = Point()
p.x = 3
p.y = -5

• We'd prefer to be able to say:

p = Point(3, -5)
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Constructors
def __init__(self [, parameter, ..., 
parameter]):
    statements

– a constructor is a special method with the name 
__init__
that initializes the state of an object

– Example:

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
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More About Fields

– fields can be declared directly inside class,
or just in the constructor as shown here (more 
common)

point.py
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class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    ...

>>> p = Point(5, -2)
>>> p.x
5
>>> p.y
-2
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Printing Objects

• By default, Python doesn't know how to print an 
object:

• We'd like to be able to print a Point object and have 
its state shown as the output.

>>> p = Point(5, -2)
>>> print p
<Point instance at 0x00A8A850>
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Printable Objects: __str__

def __str__(self):

    return string

– converts an object into a string (like Java toString 
method)

– invoked automatically when str or print is called

def __str__(self):

    return "(" + str(self.x) + ", " + str(self.y) + ")"

>>> p = Point(5, -2)
>>> print p
(5, -2)
>>> print "The point is " + str(p) + "!"
The point is (5, -2)!
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Exercise: Point Class

Write a class called point that and includes 
methods for:
– Translating to new coordinates
– Distance between two points
– Distance from the origin
– Printing the point in the form (x,y) 
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Complete Point Class
point.py
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from math import *

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def distance_from_origin(self):
        return sqrt(self.x * self.x + self.y * self.y)

    def distance(self, other):
        dx = self.x - other.x
        dy = self.y - other.y
        return sqrt(dx * dx + dy * dy)

    def translate(self, dx, dy):
        self.x += dx
        self.y += dy

    def __str__(self):
        return "(" + str(self.x) + ", " + str(self.y) + ")"
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Python Object Details
• Drawbacks

– Does not have encapsulation like Java (ability to 
protect fields' data from access by client code)

– Not easy to have a class with multiple constructors
– Must explicitly declare self parameter in all methods
– Strange names like __str__, __init__

• Benefits
– operator overloading: Define < by writing __lt__ , 

etc.
http://docs.python.org/ref/customization.html
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Exceptions

raise type(message) 

raise Exception(message) 

Exceptions

AssertionError

TypeError

NameError

ValueError

IndexError

SyntaxError

ArithmeticError

http://docs.python.org/library/exceptions.html#bltin-exceptions
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Inheritance

• Python has multiple inheritance
• This means that we can create a class that 

subclasses several classes
• Python makes an effort to mix super classes

– Searches super classes from left to right
– We can disambiguate if there are problems with this

example.py

1
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class ClassName(SuperClass1, SuperClass2, ...):
    def __init__(self, params, ...):
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Commenting Your Classes

• Classes and functions have a built-in field called 
__doc__

• We can use this as a way to get more bang for our 
comments

• These __doc__ fields could be used like JavaDoc

example.py
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class Point():
    “““This class defines a point in 2D space”””
    def __init__(self, x, y):
        “““Post: returns a Point with the given x and y fields””” 
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Name Mangling

• Python does not have private methods
• Python does have name mangling, any method that 

starts with 2+ underscores and does not end in 2+ 
underscores with be renamed to 
_classname__method

example.py
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class Foo():
    def __init__(self):
        self.__helper()
    def __helper(self):
        print(“sneaky”)

x = Foo()                    #output: sneaky
x._Foo__helper()             #output: sneaky
x.__helper()                 #output: AttributeError
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Static Fields

• There is a subtle difference between declaring fields 
in the class and declaring them in the constructor

• Fields defined in the class can be used as static 
variables, meaning they belong to the class as a 
whole

example.py
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class MovieTicket():
    basePrice = 10
    def __init__(self, fee):
        self.price = self.basePrice + fee
x = MovieTicket(5)
print(x.price)                               #result: 15
print(MovieTicket.basePrice)                 #result: 10
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Static Methods

• We can use decorators to tell our function to be 
static, meaning they belong to the class, not an 
instance

example.py
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class Point():
    def __init__(self, x, y):
        self.x = x
        self.y = y
    @staticmethod
    def distance(p1, p2):
        d = sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2 )
        return d
x = Point(0, 0)
y = Point(0, 5)                             
print(Point.distance(x, y))                 #result: 5
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Class Methods

• A class method receives a reference to the class 
instead of a reference to an instance

• You can use this class parameter (cls) to reference 
the static variables or methods

• One use of this ability is writing documentation 
methods
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Class Methods

example.py
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class Point():
    """This class defines a point in 2D space."""
    def __init__(self, x, y):
        """Post: returns a Point with coordinates (x,y)"""
        self.x = x
        self.y = y
    @classmethod
    def help(cls):
        for attr in cls.__dict__:
        print(str(attr) + ": " + cls.__dict__         
                   [attr].__doc__)#result: 5

x = Point(0, 0)
x.help() 
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__str__()

• We already know about the __str__() method that 
allows a class to convert itself into a string

rectangle.py
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class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
        
    def __str__(self):
        return "(" + str(self.x) + ", " + 
            str(self.y) + ")"
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First Class Citizens

• For built-in types like ints and strings we can use 
operators like + and *.

• Our classes so far were forced to take back routes 
and use methods like add() or remove()

• Python is super cool, in that it allows us to define the 
usual operators for our class

• This brings our classes up to first class citizen status 
just like the built in ones
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Underscored methods

• There are many other underscored methods that 
allow the built-in function of python to work

• Most of the time the underscored name matches the 
built-in function name

Built-In Class Method

str() __str__()

len() __len__()

abs() __abs__()
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Underscored methods
• There are underscore methods that you can 

implement in order to define logical operations and 
arithmetic operations

Operator Class Method

- __sub__(self,other)

+ __add__(self, other)

* __mul__(self, other)

/ __truediv__(self, other)

Binary Operators
Comparison Operators

Unary Operators

Operator Class Method

- __neg__(self)

+ __pos__(self)

Operator Class Method

== __eq__(self,other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

N/A __nonzero__(self)

http://docs.python.org/reference/datamodel.html#sequence-types
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Vector Class

Lets write a class that represents a Vector. A Vector is 
a Point that has some extra functionality. We should 
be able to add and subtract two Vectors, determine 
if two Vectors are equal. We should be able to 
multiply a Vector by a scalar and ask what the 
Vector’s length is as an integer.
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Vector Class
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Vector Class
point.py
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from math import *

class Vector(Point):
    Origin = Point(0,0)
    def __init__(self, x, y):
        super().__init__(x,y)

    def __add__(self, other):
        return Vector(self.x+other.x, self.y+other.y)

    def __len__(self):
        return int(Vector.distance(Vector.origin,self))

    def __isDiagonal(self):
        Retuen self.x == self.y

    @staticmethod
    def dot(p1, p2):
        return p1.x * p2.x + p1.y * p2.y
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