
Classes

Special thanks to Roy McElmurry, Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on 
these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0



2

OOP and Python

Python was built as a procedural language
– OOP exists and works fine, but feels a bit more "tacked 

on"

– Java probably does classes better than Python (gasp)



3

Defining a Class

Declaring a class:

class Name:
    ...

– class name is capitalized (e.g. Point)

– saved into a file named name.py (filename is 
lowercase)



4

Fields

Declaring a field:

name = value

– Example:

class Point:
    x = 0
    y = 0

point.py

1
2
3

class Point:
    x = 0
    y = 0



5

Using a Class

from name import *

– client programs must import the classes they use
– the file name (lowercase), not class name, is used

point_main.py

1
2
3
4
5
6
7
8

from point import *

# main
p1 = Point()
p1.x = 7
p1.y = -3

...



6

"Implicit" Parameter (self)
• Java object methods refer to the object's fields 

implicitly:

public void translate(int dx, int dy) {
    x += dx;
    y += dy;    // change this object's x/y
}

• Python's implicit parameter is named self
– self must be the first parameter of any object method
– access the object's fields as self.field

def translate(self, dx, dy):
    self.x += dx
    self.y += dy



7

Methods
def name(self [, parameter, ..., parameter]):
    statements

– Example:
class Point:
    def translate(self, dx, dy):
        self.x += dx
        self.y += dy
    ...

– Exercise: Write the following methods in class Point:
• set_location
• draw
• distance



8

Initializing Objects

• Right now, clients must initialize Points like this:

p = Point()
p.x = 3
p.y = -5

• We'd prefer to be able to say:

p = Point(3, -5)



9

Initializing Objects

• Right now, clients must initialize Points like this:

p = Point()
p.x = 3
p.y = -5

• We'd prefer to be able to say:

p = Point(3, -5)



10

Constructors
def __init__(self [, parameter, ..., 
parameter]):
    statements

– a constructor is a special method with the name 
__init__
that initializes the state of an object

– Example:

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y



11

More About Fields

– fields can be declared directly inside class,
or just in the constructor as shown here (more 
common)

point.py

1
2
3
4
5

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    ...

>>> p = Point(5, -2)
>>> p.x
5
>>> p.y
-2



12

Printing Objects

• By default, Python doesn't know how to print an 
object:

• We'd like to be able to print a Point object and have 
its state shown as the output.

>>> p = Point(5, -2)
>>> print p
<Point instance at 0x00A8A850>



13

Printable Objects: __str__

def __str__(self):

    return string

– converts an object into a string (like Java toString 
method)

– invoked automatically when str or print is called

def __str__(self):

    return "(" + str(self.x) + ", " + str(self.y) + ")"

>>> p = Point(5, -2)
>>> print p
(5, -2)
>>> print "The point is " + str(p) + "!"
The point is (5, -2)!



14

Exercise: Point Class

Write a class called point that and includes 
methods for:
– Translating to new coordinates
– Distance between two points
– Distance from the origin
– Printing the point in the form (x,y) 



15

Complete Point Class
point.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

from math import *

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def distance_from_origin(self):
        return sqrt(self.x * self.x + self.y * self.y)

    def distance(self, other):
        dx = self.x - other.x
        dy = self.y - other.y
        return sqrt(dx * dx + dy * dy)

    def translate(self, dx, dy):
        self.x += dx
        self.y += dy

    def __str__(self):
        return "(" + str(self.x) + ", " + str(self.y) + ")"



16

Python Object Details
• Drawbacks

– Does not have encapsulation like Java (ability to 
protect fields' data from access by client code)

– Not easy to have a class with multiple constructors
– Must explicitly declare self parameter in all methods
– Strange names like __str__, __init__

• Benefits
– operator overloading: Define < by writing __lt__ , 

etc.
http://docs.python.org/ref/customization.html



17

Exceptions

raise type(message) 

raise Exception(message) 

Exceptions

AssertionError

TypeError

NameError

ValueError

IndexError

SyntaxError

ArithmeticError

http://docs.python.org/library/exceptions.html#bltin-exceptions



18

Inheritance

• Python has multiple inheritance
• This means that we can create a class that 

subclasses several classes
• Python makes an effort to mix super classes

– Searches super classes from left to right
– We can disambiguate if there are problems with this

example.py

1
2

class ClassName(SuperClass1, SuperClass2, ...):
    def __init__(self, params, ...):
        



19

Commenting Your Classes

• Classes and functions have a built-in field called 
__doc__

• We can use this as a way to get more bang for our 
comments

• These __doc__ fields could be used like JavaDoc

example.py

1
2
3
4

class Point():
    “““This class defines a point in 2D space”””
    def __init__(self, x, y):
        “““Post: returns a Point with the given x and y fields””” 
        



20

Name Mangling

• Python does not have private methods
• Python does have name mangling, any method that 

starts with 2+ underscores and does not end in 2+ 
underscores with be renamed to 
_classname__method

example.py

1
2
3
4
5
6
7
8
9

class Foo():
    def __init__(self):
        self.__helper()
    def __helper(self):
        print(“sneaky”)

x = Foo()                    #output: sneaky
x._Foo__helper()             #output: sneaky
x.__helper()                 #output: AttributeError
     



21

Static Fields

• There is a subtle difference between declaring fields 
in the class and declaring them in the constructor

• Fields defined in the class can be used as static 
variables, meaning they belong to the class as a 
whole

example.py

1
2
3
4
5
6
7

class MovieTicket():
    basePrice = 10
    def __init__(self, fee):
        self.price = self.basePrice + fee
x = MovieTicket(5)
print(x.price)                               #result: 15
print(MovieTicket.basePrice)                 #result: 10
     



22

Static Methods

• We can use decorators to tell our function to be 
static, meaning they belong to the class, not an 
instance

example.py

1
2
3
4
5
6
7
8
9

10
11

class Point():
    def __init__(self, x, y):
        self.x = x
        self.y = y
    @staticmethod
    def distance(p1, p2):
        d = sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2 )
        return d
x = Point(0, 0)
y = Point(0, 5)                             
print(Point.distance(x, y))                 #result: 5
     



23

Class Methods

• A class method receives a reference to the class 
instead of a reference to an instance

• You can use this class parameter (cls) to reference 
the static variables or methods

• One use of this ability is writing documentation 
methods



24

Class Methods

example.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class Point():
    """This class defines a point in 2D space."""
    def __init__(self, x, y):
        """Post: returns a Point with coordinates (x,y)"""
        self.x = x
        self.y = y
    @classmethod
    def help(cls):
        for attr in cls.__dict__:
        print(str(attr) + ": " + cls.__dict__         
                   [attr].__doc__)#result: 5

x = Point(0, 0)
x.help() 



25

__str__()

• We already know about the __str__() method that 
allows a class to convert itself into a string

rectangle.py

1
2
3
4
5
6
7
8
9

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
        
    def __str__(self):
        return "(" + str(self.x) + ", " + 
            str(self.y) + ")"



26

First Class Citizens

• For built-in types like ints and strings we can use 
operators like + and *.

• Our classes so far were forced to take back routes 
and use methods like add() or remove()

• Python is super cool, in that it allows us to define the 
usual operators for our class

• This brings our classes up to first class citizen status 
just like the built in ones



27

Underscored methods

• There are many other underscored methods that 
allow the built-in function of python to work

• Most of the time the underscored name matches the 
built-in function name

Built-In Class Method

str() __str__()

len() __len__()

abs() __abs__()



28

Underscored methods
• There are underscore methods that you can 

implement in order to define logical operations and 
arithmetic operations

Operator Class Method

- __sub__(self,other)

+ __add__(self, other)

* __mul__(self, other)

/ __truediv__(self, other)

Binary Operators
Comparison Operators

Unary Operators

Operator Class Method

- __neg__(self)

+ __pos__(self)

Operator Class Method

== __eq__(self,other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

N/A __nonzero__(self)

http://docs.python.org/reference/datamodel.html#sequence-types



29

Vector Class

Lets write a class that represents a Vector. A Vector is 
a Point that has some extra functionality. We should 
be able to add and subtract two Vectors, determine 
if two Vectors are equal. We should be able to 
multiply a Vector by a scalar and ask what the 
Vector’s length is as an integer.



30

Vector Class



31

Vector Class
point.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

from math import *

class Vector(Point):
    Origin = Point(0,0)
    def __init__(self, x, y):
        super().__init__(x,y)

    def __add__(self, other):
        return Vector(self.x+other.x, self.y+other.y)

    def __len__(self):
        return int(Vector.distance(Vector.origin,self))

    def __isDiagonal(self):
        Retuen self.x == self.y

    @staticmethod
    def dot(p1, p2):
        return p1.x * p2.x + p1.y * p2.y


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

