
Functional 
Programming

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0



2

Functions as parameters

• Have you ever wanted to pass an entire function as 
a parameter

• Python has functions as first-class citizens, so you 
can do this

• You simply pass the functions by name



3

Properties of Functions

Field Description

__name__ This is the name of the function. This 
only have a meaningful value is the 
function is defined with “def”. 

__class__ This is a reference to the class a method 
belongs to.

__code__ This is a reference to the code object 
used in the implementation of python

__doc__ This is the documentation string for the 
function.



4

inspect

Field Description

getdoc(x) Returns a pretty version of the docstring 
for the give object.

getcomments(x) Returns the comments that appear just 
above the given function/class/module.

getsource(x) Returns the source code for the given 
function/class/module

getmembers(x) Returns a list of the members (fields and 
methods) of a class

• A useful class for inspecting functions and classes.
– from inspect import *



5

Function Parameter Example

ex.py

1
2
3
4
5
6
7
8
9
0
1
2
3

def mult_2(x):
    return x * 2

def add_2(x):
    return x + 2

def opp_on_item(item, func):
    return func(item)

#main
opp_on_item(12, mult_2)                #result: 24
opp_on_item(12, add_2)                 #result: 14



6

Lambda

• Sometimes you need a simply arithmetic function
• Its silly to write a method for it, but redundant not 

too
• With lambda we can create quick simple functions
• Facts

– Lambda functions can only be comprised of a single 
expression

– No loops, no calling other methods
– Lambda functions can take any number of variables

Syntax:
lambda param1,…,paramn : expression



7

Lambda Syntax
lambda.py

1
2
3
4
5
6
7
8
9
0
1
2
3

#Example 1
square_func = lambda x : x**2
square_func(4)                    #return: 16

#Example 2
close_enough = lambda x, y : abs(x – y) < 3
close_enough(2, 4)                #return: True

#Example 3
def get_func(n) :
    return lambda x : x * n + x % n
my_func = get_func(13)
my_func(4)                        #return: 56



8

operator

• Most of the built-in functions (len, +, *, <) can be 
accessed through the operator module

• Need to import the operator module
– from operator import *

Operator Function

- sub(x, y)

+ add(x, y)

* __mul__(self, other)

Operator Function

- neg(x)

+ pos(x)

Operator Function

== eq(x,y)

!= ne(x, y)

< lt(x, y)

> gt(x, y)

<= le(x, y)

>= ge(x, y)



9

Partially Instantiated Functions

• We have seen that we can create lambda functions 
for quick functions on the go

• We have also seen that we can use the built in 
operators through the operator class

• What we would like to do is use the built in operators 
with a silly lambda function

• We can do this by partially instantiating function 
with the partial function from the functools 
package
– You supply some of the parameters and get a function 

back the needs the rest of the parameters in order to 
execute



10

partial

partial.py

1
2
3
4
5
6
7
8
9
0

def mult1(x):
    return 2 * x
mult2 = lambda x : 2 * x
mult3 = partial(mul, 2)

x = 10

print(mult1(5));                 #10
print(mult2(5));                 #10
print(mult3(5));                 #10



11

Higher-Order Functions

• A higher-order function is a function that takes 
another function as a parameter

• They are “higher-order” because it’s a function of a 
function

• Examples
– Map
– Reduce
– Filter

• Lambda works great as a parameter to higher-order 
functions if you can deal with its limitations



12

Transform Example

• Let’s write a method called transform that takes a 
list and a function as parameters and applies the 
function to each element of the list

transform.py

1
2
3
4
5
6
7

def mult_2(x):
    return x * 2
...
#Main
x = [1, 2, 3]
transform(x, mult_2)
print(x)                         #[2, 4, 6]



13

Transform Solution

transform.py

1
2
3
4
5
6
7
8
9

def transform(arr, func):
    for i in range(len(arr)):
        arr[i] = func(arr[i])

x = [1, 2, 3]
transform(x, mult_2)
print(x)                     #[2, 4, 6]


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

