
Building Java Programs

Appendix Q
Lecture Q-1: stacks and queues

reading: appendix Q

2

3

Runtime Efficiency (13.2)
�  efficiency: measure of computing resources used by code.

�  can be relative to speed (time), memory (space), etc.
�  most commonly refers to run time

�  Assume the following:
�  Any single Java statement takes same amount of time to run.
�  A method call's runtime is measured by the total of the

statements inside the method's body.
�  A loop's runtime, if the loop repeats N times, is N times the

runtime of the statements in its body.

4

Collection efficiency

Method ArrayList
add

add(index, value)
indexOf
get
remove
set
size

�  Efficiency of our ArrayIntList or Java's ArrayList:

�  Which operations should we try to avoid?

Method ArrayList
add O(1)
add(index, value) O(N)
indexOf O(N)
get O(1)
remove O(N)
set O(1)
size O(1)

5

Stacks and queues
�  Some collections are constrained so clients can only use

optimized operations
�  stack: retrieves elements in reverse order as added
�  queue: retrieves elements in same order as added

stack

queue

top 3

2

bottom 1

pop, peek push

front back

1 2 3
add remove, peek

6

Abstract data types (ADTs)
�  abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.
�  Describes what a collection does, not how it does it

�  We don't know exactly how a stack or queue is
implemented, and we don't need to.
�  We just need to understand the idea of the collection and what

operations it can perform.

 (Stacks are usually implemented with arrays; queues are often
implemented using another structure called a linked list.)

7

Stacks
�  stack: A collection based on the principle of adding

elements and retrieving them in the opposite order.
�  Last-In, First-Out ("LIFO")
�  Elements are stored in order of insertion.

�  We do not think of them as having indexes.
�  Client can only add/remove/examine

the last element added (the "top").

�  basic stack operations:
�  push: Add an element to the top.
�  pop: Remove the top element.
�  peek: Examine the top element.

stack

top 3

2

bottom 1

pop, peek push

8

Stacks in computer science
�  Programming languages and compilers:

�  method calls are placed onto a stack (call=push, return=pop)
�  compilers use stacks to evaluate expressions

�  Matching up related pairs of things:
�  find out whether a string is a palindrome
�  examine a file to see if its braces { } match
�  convert "infix" expressions to pre/postfix

�  Sophisticated algorithms:
�  searching through a maze with "backtracking"
�  many programs use an "undo stack" of previous operations

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

9

Class Stack

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top

System.out.println(s.pop()); // "c"

�  Stack has other methods that are off-limits (not efficient)

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

10

Collections of primitives
�  The type parameter specified when creating a collection

(e.g. ArrayList, Stack, Queue) must be an object type

 // illegal -- int cannot be a type parameter
 Stack<int> s = new Stack<int>();
 ArrayList<int> list = new ArrayList<int>();

�  Primitive types need to be "wrapped" in objects

 // creates a stack of ints
 Stack<Integer> s = new Stack<Integer>();

11

Wrapper classes

�  Wrapper objects have a single field of a primitive type

�  The collection can be used with familiar primitives:

ArrayList<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...
double myGrade = grades.get(0);

Primitive Type Wrapper Type

 int Integer
 double Double
 char Character
 boolean Boolean

12

Stack limitations/idioms
�  You cannot loop over a stack in the usual way.

 Stack<Integer> s = new Stack<Integer>();
 ...
 for (int i = 0; i < s.size(); i++) {
 do something with s.get(i);
 }

�  Instead, you pull elements out of the stack one at a time.
�  common idiom: Pop each element until the stack is empty.

 // process (and destroy) an entire stack
 while (!s.isEmpty()) {
 do something with s.pop();
 }

13

What happened to my stack?
�  Suppose we're asked to write a method max that accepts a

Stack of integers and returns the largest integer in the
stack:

// Precondition: !s.isEmpty()
public static void max(Stack<Integer> s) {
 int maxValue = s.pop();

 while (!s.isEmpty()) {
 int next = s.pop();
 maxValue = Math.max(maxValue, next);
 }
 return maxValue;
}

�  The algorithm is correct, but what is wrong with the code?

14

What happened to my stack?
�  The code destroys the stack in figuring out its answer.

�  To fix this, you must save and restore the stack's contents:

public static void max(Stack<Integer> s) {
 Stack<Integer> backup = new Stack<Integer>();
 int maxValue = s.pop();
 backup.push(maxValue);

 while (!s.isEmpty()) {
 int next = s.pop();
 backup.push(next);
 maxValue = Math.max(maxValue, next);
 }

 while (!backup.isEmpty()) { // restore
 s.push(backup.pop());
 }
 return maxValue;
}

15

Queues
�  queue: Retrieves elements in the order they were added.

�  First-In, First-Out ("FIFO")
�  Elements are stored in order of

insertion but don't have indexes.
�  Client can only add to the end of the

queue, and can only examine/remove
the front of the queue.

�  basic queue operations:
�  add (enqueue): Add an element to the back.
�  remove (dequeue): Remove the front element.
�  peek: Examine the front element.

queue

front back

1 2 3
add remove, peek

16

Queues in computer science
�  Operating systems:

�  queue of print jobs to send to the printer
�  queue of programs / processes to be run
�  queue of network data packets to send

�  Programming:
�  modeling a line of customers or clients
�  storing a queue of computations to be performed in order

�  Real world examples:
�  people on an escalator or waiting in a line
�  cars at a gas station (or on an assembly line)

17

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

�  IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.
�  This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

18

Queue idioms
�  As with stacks, must pull contents out of queue to view

them.

 // process (and destroy) an entire queue
 while (!q.isEmpty()) {
 do something with q.remove();
 }

�  another idiom: Examining each element exactly once.

 int size = q.size();
 for (int i = 0; i < size; i++) {
 do something with q.remove();
 (including possibly re-adding it to the queue)
 }

�  Why do we need the size variable?

19

Mixing stacks and queues
�  We often mix stacks and queues to achieve certain effects.

�  Example: Reverse the order of the elements of a queue.

 Queue<Integer> q = new LinkedList<Integer>();
 q.add(1);
 q.add(2);
 q.add(3); // [1, 2, 3]

 Stack<Integer> s = new Stack<Integer>();

 while (!q.isEmpty()) { // Q -> S
 s.push(q.remove());
 }

 while (!s.isEmpty()) { // S -> Q
 q.add(s.pop());
 }

 System.out.println(q); // [3, 2, 1]

20

Exercises
�  Write a method stutter that accepts a queue of integers

as a parameter and replaces every element of the queue
with two copies of that element.

�  front [1, 2, 3] back
becomes
front [1, 1, 2, 2, 3, 3] back

�  Write a method mirror that accepts a queue of strings as a
parameter and appends the queue's contents to itself in
reverse order.

�  front [a, b, c] back
becomes
front [a, b, c, c, b, a] back

