
Building Java Programs

Inner classes, generics, abstract classes

reading: 9.6, 15.4, 16.4-16.5

2

A tree set
�  Our SearchTree class is essentially a set.

�  operations: add, remove, contains, size, isEmpty
�  similar to the TreeSet class in java.util

�  Let's actually turn it into a full set implementation.
�  step 1: create ADT interface; implement it
�  step 2: get rid of separate node class file
�  step 3: make tree capable of storing

 any type of data (not just int)

�  We won't rebalance the tree, take a
data structures class to learn how! y m

p e

k

g c

overallRoot

3

Recall: ADTs (11.1)

�  abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.
�  Describes what a collection does, not how it does it.

�  Java's collection framework describes ADTs with interfaces:
�  Collection, Deque, List, Map, Queue, Set, SortedMap

�  An ADT can be implemented in multiple ways by classes:
�  ArrayList and LinkedList implement List
�  HashSet and TreeSet implement Set
�  LinkedList , ArrayDeque, etc. implement Queue

4

Inner classes
To get rid of our separate node file, we use an inner class.

�  inner class: A class defined inside of another class.
�  inner classes are hidden from other classes (encapsulated)
�  inner objects can access/modify the fields of the outer object

5

Inner class syntax
// outer (enclosing) class
public class name {
 ...

 // inner (nested) class
 private class name {
 ...
 }
}

�  Only this file can see the inner class or make objects of it.
�  Each inner object is associated with the outer object that

created it, so it can access/modify that outer object's
methods/fields.
�  If necessary, can refer to outer object as OuterClassName.this

6

Recall: Type Parameters
ArrayList<Type> name = new ArrayList<Type>();

�  When constructing a java.util.ArrayList, you specify
the type of elements it will contain in < and >.
�  ArrayList accepts a type parameter; it is a generic class.

ArrayList<String> names = new ArrayList<String>();
names.add("Marty Stepp");
names.add("Helene Martin");
names.add(42); // compiler error

7

Implementing generics
// a parameterized (generic) class
public class name<Type> {
 ...
}

�  Forces any client that constructs your object to supply a type.
�  Don't write an actual type such as String; the client does that.
�  Instead, write a type variable name such as E (for "element") or T

(for "type").

�  You can require multiple type parameters separated by commas.

�  The rest of your class's code can refer to that type by name.

8

Generics and inner classes
public class Foo<E> {
 private class Inner<E> {...} // incorrect
 private class Inner {...} // correct
}

�  If an outer class declares a type parameter,
inner classes can also use that type parameter.

�  The inner class should NOT redeclare the type parameter.
�  (If you do, it will create a second type param with the same name.)

9

Issues with generic objects
public class TreeSet<E> {
 ...
 public void example(E value1, E value2) {

 // BAD: value1 == value2 (they are objects)
 // GOOD: value1.equals(value2)

 // BAD: value1 < value2
 // GOOD: value1.compareTo(value2) < 0

 }
}

�  When testing objects of type E for equality, must use equals
�  When testing objects of type E for < or >, must use compareTo

�  Problem: By default, compareTo doesn't compile! What's wrong!

10

Type constraints
// a parameterized (generic) class
public class name<Type extends Class/Interface> {
 ...
}

�  A type constraint forces the client to supply a type that is a

subclass of a given superclass or implements a given interface.

�  Then the rest of your code can assume that the type has all of the
methods in that superclass / interface and can call them.

11

Generic set interface
// Represents a list of values.
public interface Set<E> {
 public void add(E value);
 public boolean isEmpty();
 public boolean contains(E value);
 public void remove(E value);
 public int size();
}

public class TreeSet<E extends Comparable<E>>
 implements Set<E> {
 ...

12

Our list classes
�  We have implemented the following two list collection

classes:

�  ArrayIntList

�  LinkedIntList

�  Problems:
�  We should be able to treat them the same way in client code.
�  Linked list carries around a clunky extra node class.
�  They can store only int elements, not any type of value.
�  Some methods are implemented the same way

(redundancy).
�  It is inefficient to get or remove each element of a linked list.

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3
data next

17

13

Generics and arrays (15.4)
public class Foo<T> {
 private T myField; // ok

 public void method1(T param) {
 myField = new T(); // error
 T[] a = new T[10]; // error

 myField = param; // ok
 T[] a2 = (T[]) (new Object[10]); // ok
 }
}

�  You cannot create objects or arrays of a parameterized type.
�  You can create variables of that type, accept them as

parameters, return them, or create arrays by casting from
Object[] .

14

Common code
�  Notice that some of the methods are implemented the

same way in both the array and linked list classes.

�  add(value)
�  contains
�  isEmpty

�  Should we change our interface to a class? Why / why not?
�  How can we capture this common behavior?

15

Abstract classes (9.6)

�  abstract class: A hybrid between an interface and a class.
�  defines a superclass type that can contain method declarations

(like an interface) and/or method bodies (like a class)
�  like interfaces, abstract classes that cannot be instantiated

(cannot use new to create any objects of their type)

�  What goes in an abstract class?
�  implementation of common state and behavior that will be

inherited by subclasses (parent class role)
�  declare generic behaviors that subclasses must implement

(interface role)

16

Abstract class syntax
// declaring an abstract class
public abstract class name {
 ...

 // declaring an abstract method
 // (any subclass must implement it)
 public abstract type name(parameters);

}

�  A class can be abstract even if it has no abstract methods
�  You can create variables (but not objects) of the abstract

type

�  Exercise: Introduce an abstract class into the list hierarchy.

17

Abstract and interfaces
�  Normal classes that claim to implement an interface must

implement all methods of that interface:

public class Empty implements IntList {} // error

�  Abstract classes can claim to implement an interface
without writing its methods; subclasses must implement
the methods.

public abstract class Empty implements IntList {} //
ok

public class Child extends Empty {} // error

18

An abstract list class
// Superclass with common code for a list of integers.
public abstract class AbstractIntList implements IntList {
 public void add(int value) {
 add(size(), value);
 }

 public boolean contains(int value) {
 return indexOf(value) >= 0;
 }

 public boolean isEmpty() {
 return size() == 0;
 }
}

public class ArrayIntList extends AbstractIntList { ...
public class LinkedIntList extends AbstractIntList { ...

19

Abstract class vs. interface
�  Why do both interfaces and abstract classes exist in Java?

�  An abstract class can do everything an interface can do and
more.

�  So why would someone ever use an interface?

�  Answer: Java has single inheritance.
�  can extend only one superclass
�  can implement many interfaces

�  Having interfaces allows a class to be part of a hierarchy
(polymorphism) without using up its inheritance relationship.

20

Our list classes
�  We have implemented the following two list collection

classes:

�  ArrayIntList

�  LinkedIntList

�  Problems:
�  We should be able to treat them the same way in client code.
�  Linked list carries around a clunky extra node class.
�  They can store only int elements, not any type of value.
�  Some of their methods are implemented the same way

(redundancy).
�  It is inefficient to get or remove elements of a linked list.

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3
data next

17

