
University of Washington, CSE 154
Homework Assignment 4: NerdLuv

This assignment is about making a simple multi-page "online dating" site that processes HTML forms with PHP.
Online dating has become mainstream with popular sites such as eHarmony, Match.com, OkCupid, Chemistry, and
Plenty of Fish. Your task for this assignment is to write HTML and PHP code for a fictional online dating site for
desperate single geeks, called NerdLuv. Turn in the following files:

• index.php, a front page that links to the other page (partially provided)
• signup.php, a page with a form that the user can use to sign up for a new account
• signup-submit.php, the page that receives data submitted by signup.php and signs up the new user
• matches.php, a page with a form for existing users to log in and check their dating matches
• matches-submit.php, the page that receives data submitted by matches.php and show's the user's matches
• common.php, a file containing any common code used by the above pages

There are some provided files on the web site. The first is a mostly complete version of the site's front page,
index.php. We also provide a complete CSS file nerdluv.css with all of the page styles. Link to this CSS file from
all of your pages and use its styles in your code. You can fully style all pages using the styles in nerdluv.css only.

Index Page (index.php) and Overall Site Navigation:
The provided index.php has a header/footer and links
to signup.php and matches.php. This file's contents
are complete, but large parts of it are repeated on other
pages. The repeated parts should be turned into
functions in common.php that are called by each page.

The "Sign up" link leads to signup.php (left below),
and "Check matches" to matches.php (right below):

When submitted, the Signup page looks like this:

When submitted, the View Matches form looks like this:

The details about each page's contents and behavior are described on the following pages.
Screenshots in this document are from Windows in Firefox, which may differ from your system.

Sign-Up Page (signup.php):
The signup.php page has a header logo, a form to create a
new account, and footer notes/images. You must write the
HTML code for the form. The form contains the following
labeled fields:

• Name: A 16-character box for the user to type a name.

• Gender: Radio buttons for the user to select a gender of
Male or Female. When the user clicks the text next to a
radio button, that button should become checked. Initially
Female is checked.

• Age: A 6-letter-wide text input box for the user to type
his/her age in years. The box should allow typing up to 2
characters.

• Personality type: A 6-character-wide text box allowing
the user to type a Keirsey personality type, such as ISTJ or
ENFP. The box should let the user type up to 4
characters. The label has a link to
http://www.humanmetrics.com/cgi-win/JTypes2.asp .

• Favorite OS: A drop-down select box allowing the user to select a favorite operating system. The choices are
Windows, Mac OS X, and Linux. Initially "Windows" is selected.

• Seeking age: Two 6-character-wide text boxes for the user to specify the range of acceptable ages of partners.
The box should allow the user to type up to 2 characters in each box. Initially both are empty and have
placeholder text of "min" and "max" respectively. When the user starts typing, this placeholder text disappears.

• Sign Up: When pressed, submits the form for processing as described below.

Submitting the Sign-Up Form (signup-submit.php):
When the user presses "Sign Up," the form should submit its
data as a POST to signup-submit.php. (The exact names
and values of the query parameter(s) are up to you.) your
PHP code should read the data from the query parameters and
store it as described below. The resulting page has the usual
header and footer and text thanking the user. The text "log in
to see your matches!" links to matches.php.

Your site's user data is stored in a file singles.txt, placed in the
same folder as your PHP files. We will provide you an initial
version of this file. The file contains data records as lines in
exactly the following format, with the user's name, gender (M
or F), age, personality type, operating system, and min/max
seeking age, separated by commas:

Angry Video Game Nerd,M,29,ISTJ,Mac OS X,1,99
Lara Croft,F,23,ENTP,Linux,18,30
Seven of Nine,F,40,ISTJ,Windows,12,50

Your signup-submit.php code should create a line representing the new user's information and add it to the end of
the file. See the PHP file_put_contents function in book Chapter 5 or the lecture slides. You will have to add a
line break (\n) after each line of data that you add to the file.

In all pages, assume valid data for the file's contents and form submissions. For example, no fields will be left
blank or contain illegal characters (such as a comma). No user will resubmit data for a name already in the system.

http://www.humanmetrics.com/cgi-win/JTypes2.asp

View Matches Page (matches.php):
The matches.php page has a header logo, a form to log in
and view the user's matches, and footer notes/images. You
must write the HTML for the form. The form has one field:

• Name: A label and 16-letter box for the user to type a
name. Initially empty. Submit to the server as a query
parameter name.

When the user presses "View My Matches," the form submits
its data as a GET request to matches-submit.php. The
name of the query parameter sent should be name, and its
value should be the encoded text typed by the user. For
example, when the user views matches for Rosie O Donnell,
the URL should be:
• matches-submit.php?name=Rosie+O+Donnell

Viewing Matches (matches-submit.php):
When viewing matches for a given user, matches-submit.php
should show a central area displaying each match. Write PHP
code that reads the name from the page's name query
parameter and finds which other singles match the given user.
The existing singles to match against are records found in the
file singles.txt as described previously. You may assume that
the name parameter is passed and will be found in the file.

Below the banner should be a heading of "Matches for
(name)". Below this is a list of singles that match the user.
A "match" is a person with all of the following qualities:

• The opposite gender of the given user;
• Of compatible ages; that is, each person is between the

other's minimum and maximum ages, inclusive;
• Has the same favorite operating system as this user;
• Shares at least one personality type letter in common

at the same index in each string.
For example, ISTP and ESFP have 2 in common (S, P).

As you find each match, output the HTML to display the
matches, in the order they were originally found in the file.
Each match has the image user.jpg, the person's name, and an
unordered list with their gender, age, personality type, and OS.

https://webster.cs.washington.edu/images/nerdluv/user.jpg
Styling:
The styles you need are already given to you in nerdluv.css, but you still need to use proper tags and class attributes
to make sure they are applied. Be mindful of the styles on forms and form controls. On the course web site are
several screenshots of the various pages. Make sure that your form has the same width, colors, fonts, borders, etc. as
in these examples. If you choose the right tags to represent your form, it should match. Make sure that form fields
line up in columns by using a strong tag or column class so that each text label floats to the left and is 11em wide.

In matches-submit.php, the matches are displayed in a div with class of match. First is a paragraph containing an
image of the match, shown with a width of 150px, and the person's name to the right. The paragraph has a light
blue background color. The section with the match's gender, age, etc. must be represented as an unordered list (ul).

Uploading and Testing:
Upload all files to Webster to test them. You must change
permissions on singles.txt so that PHP can write to it; else you will
see "Permission Denied". In FileZilla, right-click singles.txt in the
right pane and choose File Permissions.... Enable Group Write by
checking the box shown at right.

Suggested Development Strategy and Hints:
• Based on index.php, write matches.php and matches-submit.php to work properly for existing users.
• Write an initial version that outputs every person, even ones who aren't compatible "matches." This way

you can debug your file I/O, styles, etc. Then add checks like gender, age, and OS. Focus on the PHP code
and behavior first, as opposed to style details (CSS is not an emphasis of this assignment).

• Write signup.php and signup-submit.php. If you finish the match page you'll understand forms, making
the signup page easier. This is tough; there are more parameters to manage, and you must write to a file.

Use print and print_r statements to track down bugs. For example, print_r($_GET); or print_r($_POST); to
see query parameters submitted. Use Firebug and View Source to find HTML output problems.

Recall that form controls must have name attributes. Sometimes you must also add a value to affect how data is sent.
Test a form by setting its action to http://webster.cs.washington.edu/params.php, which prints debug info.

Extra Features for CSE Majors:
CSE majors (B section) must complete some additional requirements specified in a separate document on the
course web site. If non-majors want to complete some extra features, they can earn extra late days for doing so.

Implementation and Grading:
All of your HTML, CSS, and PHP code should follow the guidelines in our style guide on the class web site.
Your HTML output for all pages must pass the W3C HTML validator. (Not the PHP source code itself, but the HTML
output it generates. To validate, View Source on your pages in the browser and copy/paste this into the W3C validator manually.) Do
not use HTML tables. Since we are using HTML forms, choose proper form controls and set their attributes
accordingly. Properly choose between GET and POST requests for sending data.

Your PHP code should not cause errors or warnings. Minimize use of the global keyword, use indentation/spacing,
and avoid lines over 100 characters. Use material from the first four weeks of class and the first six book chapters.
Use variables liberally; for example, when accessing data from arrays, store each element of data as its own variable
with a meaningful name, which makes the code easier to understand than arbitrary indexes like $a[7].

A major grading focus is redundancy. Some HTML sections are repeated or shared, and you may also have PHP
code statements that are repeated. Use functions, parameters/return, included files/code, loops, variables, etc.
to avoid redundancy. If you have HTML or PHP code that is shared or redundant between multiple pages, place it
into functions in common.php. You can include your common.php in your other pages.

For full credit, reduce the amount of large chunks of PHP code in the middle of HTML code. Replace such chunks
with functions declared at the top or bottom of your file. You will also lose points if you use PHP print or echo
statements. Insert dynamic content into the page using PHP expression blocks, <?= ... ?> , as taught in class.

Another grading focus is PHP commenting. We expect more comments here, similar to CSE 14x. Put a
descriptive comment header at the top of each file, each function, and each section of PHP code.

Format your HTML and PHP code similarly to the examples from class. Properly use whitespace and
indentation. Do not place more than one block element on a line or begin a block element past the 100th character.
Your source files should have proper indentation, but it's okay if their HTML output (View Source) does not.

Please do not place a solution to this assignment online on a publicly accessible web site. Part of your grade will
come from successfully uploading your files to the Webster server in the directory:

• https://webster.cs.washington.edu/your_uwnetid/hw4/
Copyright © Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

	University of Washington, CSE 154
Homework Assignment 4: NerdLuv
	Index Page (index.php) and Overall Site Navigation:
	Sign-Up Page (signup.php):
	Submitting the Sign-Up Form (signup-submit.php):
	View Matches Page (matches.php):
	Viewing Matches (matches-submit.php):
	Styling:
	Uploading and Testing:
	Suggested Development Strategy and Hints:
	Extra Features for CSE Majors:
	Implementation and Grading:

