
1 of 7

CSE 190 M, Spring 2008 
Final Exam, Thursday, June 12, 2008

Name: ___________________________________________
 

Student ID #: ___________________
 

Section and/or TA: ___________________

You have 110 minutes to complete this exam. 
You may receive a deduction if you keep working after the instructor calls for papers.
This test is open-book/notes.
You may not use any computing devices of any kind including calculators, cell phones, or music players.
Please do not abbreviate any code on your exam.
If you enter the room, you must turn in an exam before you leave.
You must show your Student ID to a TA or instructor for your exam to be accepted.

Good luck!

Problem Description Earned Max
1 JavaScript/DOM    25
2 Ajax/XML    25
3 PHP    25
4 SQL    25
X Extra Credit    +1
TOTAL 100



2 of 7

1. Javascript/DOM (25 points)
Write the Javascript code to add behavior to the following HTML code. The page contains a text input box with id of foodname, and a 
drop-down list with an id of foodgroup. The user types a name of a food item into the foodname text box, such as apple or Cookie, 
selects a food group from the drop-down list, such as dairy or fruit, and then clicks the button with id of eat. When the eat button 
is clicked, any element on the page that matches all of the following criteria will be removed from the page:

The element is an img element that has a class of food.
The element's food group matches the group chosen in the foodgroup drop-down list. Food groups are represented as class
attributes. This is in addition to the food class; recall that a class attribute can specify multiple classes separated by spaces.
For example, a jug of milk would have the following element: 
<img src="milkjug.jpg" class="food dairy" alt="milk" />.
The food item's name is the same as the text in the foodname box. The food's name is stored as the image's alt attribute. For
example, if the user types cookie, only img elements with an alt of cookie will be removed. Your code should be
case-insensitive; for example, coOKIe should also match images with an alt of cookie.

The relevant HTML code for the page is the following. Assume that Prototype is also included in the page.

<div>
    Name of Food: <input id="foodname" type="text" />
    Food Group:
    <select id="foodgroup">
        <option>dairy</option>
        <option>fats</option>
        <option>fruit</option>
        <option>meat</option>
        <option>veggies</option>
    </select>
    <button id="eat">Eat!</button>
</div>

<p>
    <img src="cookie.jpg" class="food fats" alt="cookie" />
    <img src="apple.jpg" class="fruit yummy food" alt="apple" />
    <img src="broc.jpg" class="food veggies" alt="broccoli" />
    <img src="tomato.jpg" class="fruit food" alt="tomato" />
    <img src="beefsteak.jpg" class="food meat" alt="steak" />
    <img src="milkjug.jpg" class="food dairy" alt="milk" />
    <img src="potatochips.jpg" class="fats food other" alt="chips" />
</p>

Your code should be general; it should not rely on the specific food images shown in the screenshot. You should also not rely on the
exact ordering of the words in the class attribute. Write your answer on the next page.



3 of 7

1. Javascript/DOM (writing space)



4 of 7

2. Ajax/XML (25 points)
Write the Ajax JavaScript code to fetch and display XML data from the web service named personality.php, located in the same 
directory as your code. This code should run when the web page loads. When your code makes a GET request to this service without
passing any parameters, its output is a set of XML data about users and their Keirsey personality types. Each user has a name, a 4-letter
personality type, and a set of 70 answers to a personality survey. An answer can be an A, B, or a - to indicate a blank response. (This
data is similar to the data used in CSE 142's personality test homework assignment.) Answers may appear in either upper or lowercase.
The XML data format matches the following abbreviated example:

<personalities>
  <person name="The frumious bandersnatch" type="INFP">
    <answers>-BBaBAA-BBbBBABBBBA-BaBBBBBbbBBABBBBBBABB-BBBaBBABBBBBBB-BABBBBBBBBBBB</answers>
  </person>

  <person name="Minnie Mouse" type="ISTJ">
    <answers>BABA-AABABBBAABAABA-ABABAAAB-ABAAAAAA-AAAABAAABAAABAAAAAB-ABBAAAAAAAAA</answers>
  </person>
  ...
</personalities>

Your JavaScript code should fetch the list of persons and their types, and should turn each person's information into an item in an
unordered list on the page with id of output that is already present on the page. Each list item should show the person's name, Keirsey
type, and the count of how many total "B" (or "b") answers the person gave. For the XML data above, your code would produce the
following HTML content (abbreviated with ...):

The frumious bandersnatch: INFP (54 Bs)
Minnie Mouse: ISTJ (18 Bs)
...



5 of 7

3. PHP (25 points)
Write a complete PHP web service baby.php that processes baby name data as seen in Homework 5. The service reports the best
(lowest) popularity ranking that name has ever held in the Social Security data. Your service accepts a GET request parameter named
name. Its output is a single line of plain text containing the best ranking number, or -1 if no name parameter is passed or if the name is 
not found in the file. The input file to read, names.txt, is in the following format, with each line containing a baby's first name 
followed by some number of popularity rankings. The sample data below has 11 rankings per line, but for full credit your code should
work regardless of how many rankings (1 or more) are on each line.

Martha 31 25 24 26 30 46 93 163 209 289 382
Martin 66 79 84 94 93 78 70 108 127 142 177
Martina 631 752 712 664 720 933 636 752 680 856 918
...

For example, if your service were requested as baby.php?name=Martha, its output would be 24, since that is Martha's best popularity 
ranking. If the request is baby.php?name=Martholomew, its output would be -1, since that name is not in the file. Your code should
match case-insensitively; for example, the request baby.php?name=maRTIn should match the name Martin in the data file.



6 of 7

4. SQL (25 points)
The Springfield Elementary school board is trying to crack down on grade inflation. To do this, they are trying to figure out which
teachers are giving a lot of high grades in their courses. They have asked you to write an SQL query that can be run on the simpsons
database that will find the names and course names of all teachers who gave 2 or more grades of C- or better in a given course. The
query should show the teacher's name and the course name. Recall that the simpsons database contains the following tables:

students
id name email

123 Bart bart@fox.com

456 Milhouse milhouse@fox.com

888 Lisa lisa@fox.com

404 Ralph ralph@fox.com  

courses
id name teacher_id

10001 Computer Science 142 1234

10002 Computer Science 143 5678

10003 Computer Science 190M 9012

10004 Informatics 100 1234  

grades
student_id course_id grade

123 10001 B-

123 10002 C

456 10001 B+

888 10002 A+

888 10003 A+

404 10004 D+

teachers
id name

1234 Krabappel

5678 Hoover

9012 Stepp

The results of the query would be the following, because Krabappel taught 142 and gave Bart a B- and Milhouse a B+, and Hoover
taught 143 and gave Bart a C and Lisa an A+:

+-----------+----------------------+
| Krabappel | Computer Science 142 | 
| Hoover    | Computer Science 143 | 
+-----------+----------------------+

If a teacher taught more than one course with >= 2 high grades, your query should only show that teacher's name once along with any
one of the courses in which the high grades were given by that teacher. Recall that a grade above C- is a string that occurs earlier than
the string 'C-' in alphabetical order.



7 of 7

X. Extra Credit (+1 point)
Choose a particular piece of web-related software, such as a particular web browser, operating system, or text editor. Then draw a
picture of what a typical user of that software looks like. For example, you could draw a picture of a typical IE web surfer, a Mac user,
a TextPad programmer, etc. Make sure to caption your drawing if necessary so that we know what software the person is using.

(Any drawing that appears to have taken more than a moment's work will get the +1 point.)


