
Debugging JavaScript Code
CSE 190 M (Web Programming), Spring 2008
University of Washington

References: Dr. Dobb's

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp and Jessica
Miller and are licensed under the Creative Commons Attribution 2.5 License.

"My program does nothing"
Since Javascript has no compiler, many errors will cause your Javascript program to just "do nothing." Some
questions you should ask when this happens:

Is the browser even loading my script file?
If so, is it reaching the part of the file that I want it to reach?
If so, what is it doing once it gets there?

Is my JS file loading?
put analert at the VERY TOP of your script:

if it shows up, good!
if it doesn't show up:

maybe your HTML file isn't linking to the script properly
double-check file names and directories

maybe your script has a syntax error

check bottom-right for Firebug error text
comment out the rest of your script and try it again
run your script through JSLint to find some syntax problems

Is it reaching the code I want it to reach?
put analert at the start of the appropriate function:

write a descriptive message, not just"hello" or"here"
if it shows up, good!
if it doesn't show up:

if it's an event handler, maybe you didn't attach it properly; check the code to attach the handler
maybe your script has a syntax error; run JSLint

COMMON ERROR: 'foo' has no properties
If you see the common "has no properties" error, it means you are trying to utilize an undefined value
some possible causes:

you're trying to access a variable that is out of scope
you're accessing a DOM element with$ with an invalid id
you've run off the bounds of an array
you've spelled the variable's name incorrectly

COMMON BUG: spelling error

window.onload = initalizeBody; // spelled wrong
...
function initializeBody() {
 ...
}

if you misspell an identifier, the valueundefined is used
if you setundefined as an event handler, nothing happens (fails silently)
Manifestation of bug: function doesn't get called, or a value is unexpectedlyundefined
Fix: JSLint warns you if you use an undeclared identifier

COMMON BUG: bracket mismatches

function foo() {
 ... // missing closing curly brace!

function bar() {
 ...
}

JS unfortunately doesn't always tell us when we have too many/ too few brackets in our JS code
unfortunately this is legal in JavaScript, to declare one function inside another

Manifestation of bug: script often becomes (fully or partially) non-functional
Detection: bracket matching in TextPad (highlight bracket, press Ctrl-M)
Detection: using an Indenter tool can highlight such problems (secondfunction will be unexpectedly
indented)
Detection: JSLint sometimes catches this

COMMON BUG: misuse of .style

var theDiv = document.getElementById("puzzlearea");
theDiv.left = "100px"; // BAD!
theDiv.style.onclick = myClickFunction; // BAD!

DOM objects have internalstyle object that represents CSS styles
setting styles:object.style.property = value;

the DOM objects themselves also have properties of their own
setting DOM properties:object.property = value;

Manifestation of bug: "I set the property, but it didn't do anything."
Fix: JSLint now tries to catch this and shows an error
Avoidance: if you're setting something that you would have set in the CSS file, use.style. If you would
have set it in the HTML file, don't.

COMMON BUG: incorrect units on styles

theDiv.style.left = x; // BAD! should be x + "px"
theDiv.style.backgroundPosition = x + "px" + y + "px"; // BAD! missing space

all CSS property values must be Strings, and many require units and/or a specific format
Manifestation of bug: code fails silently; style is not set
Detection: use Firebug debugger, step through code and look atstyle
Detection: use analert immediately after style property is set

theDiv.style.left = 100; // BAD!
alert("div left is " + theDiv.style.left);

COMMON BUG: incorrect usage of existing
styles

theDiv.style.top = this.getStyle("top") + 100 + "px"; // BAD! String + Number

theDiv.style.top = parseInt(this.getStyle("top")) + 100 + "px";

the first example is equivalent to something like:
"200px" + 100 + "px" , which evaluates to:
"200px100px"

Debugging in Firebug

Firebug's debugger

open Firebug, clickScript tab
click to the left of a line to set abreakpoint
refresh page
when page runs, if it gets to that line in the JS code, program will halt

Breakpoints

data: once you've stopped at a breakpoint, you can examine any variables in theWatch tab at right
can click+ to see properties/methods inside any object
this variable holds data about current object, or global data
if the object is global or not listed, type its name in the "Newwatch expression..." box
make sure Options→ Show DOM Properties is checked, so you can see any DOM-related values

Stepping through code

code: once stopped at a breakpoint, you can continue execution:
continue (F8): start the program running again
step over (F10): run the current line of code completely, then stop again
step into (F11): run the current line of code, but if it contains any calls to other methods, jump

into those and stop
step out (Shift-F11): run the current function to completion and return, then stop

Debugging CSS property code

expand DOM object with+, and expand itsstyle property to see all styles
also look at HTML (left) tab, Style (right) tab to see styles

Ajax code bugs
When writing Ajax programs, there are new kinds of bugs that are likely to appear.

Nothing happens!
TheresponseText or responseXML has no properties.
The data isn't what I expect.

How do we find and fix such bugs?

Debugging Ajax code

Net tab shows each request, its parameters, response, any errors
expand a request with+ and look atResponse tab to see Ajax result

Debugging responseXML

can examine the entire XML document, its node/tree structure

General good coding practices
ALWAYS code with Firebug installed
code a little, test a little
follow good general coding principles

remove redundant code
make each line short and simple
always use{ } even when not needed on if, for, etc.

use lines and variables liberally
it's good to save parts of a complex computation as variables
helps see what part of a big expression was bad/undefined/etc.
blank lines and profuse whitespace make code easier to read

don't fear the Firebug debugger

