
Web Programming Step by Step
Lecture 6

Introduction to PHP
Reading: 5.1 - 5.3

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

4.4: Sizing and Positioning

4.1: Styling Page Sections
4.2: Introduction to Layout
4.3: Floating Elements
4.4: Sizing and Positioning

The display property (4.4.4)

h2 { display: inline; background-color: yellow; }

This is a heading This is another heading

property description

display sets the type of CSS box model an element is displayed with

values: none, inline, block, run-in, compact, ...
use sparingly, because it can radically alter the page layout

Displaying block elements as inline

<ul id="topmenu">
 Item 1
 Item 2
 Item 3

#topmenu li {
 display: inline;
 border: 2px solid gray;
 margin-right: 1em;
}

Item 1 Item 2 Item 3

lists and other block elements can be displayed inline
flow left-to-right on same line
width is determined by content (block elements are 100% of page width)

The visibility property

p.secret {
 visibility: hidden;
}

property description

visibility
sets whether an element should be shown onscreen;
can be visible (default) or hidden

hidden elements will still take up space onscreen, but will not be shown
to make it not take up any space, set display to none instead

can be used to show/hide dynamic HTML content on the page in response to events

5.1: Server-Side Basics

5.1: Server-Side Basics

5.2: PHP Basic Syntax
5.3: Embedded PHP
5.4: Advanced PHP Syntax

URLs and web servers

http://server/path/file

usually when you type a URL in your browser:
your computer looks up the server's IP address using DNS
your browser connects to that IP address and requests the given file
the web server software (e.g. Apache) grabs that file from the server's local file system,
and sends back its contents to you

some URLs actually specify programs that the web server should run, and then send their
output back to you as the result:

https://webster.cs.washington.edu/quote2.php

the above URL tells the server webster.cs.washington.edu to run the
program quote2.php and send back its output

Server-Side web programming

server-side pages are programs written using one of many web programming
languages/frameworks

examples: PHP, Java/JSP, Ruby on Rails, ASP.NET, Python, Perl
the web server contains software that allows it to run those programs and send back their
output as responses to web requests
each language/framework has its pros and cons

we use PHP for server-side programming in this textbook

What is PHP? (5.1.2)

PHP stands for "PHP Hypertext Preprocessor"
a server-side scripting language
used to make web pages dynamic:

provide different content depending on context
interface with other services: database, e-mail, etc
authenticate users
process form information

PHP code can be embedded in XHTML code

Lifecycle of a PHP web request (5.1.1)

browser requests a .html file (static content): server just sends that file
browser requests a .php file (dynamic content): server reads it, runs any script code inside
it, then sends result across the network

script produces output that becomes the response sent back

Why PHP?

There are many other options for server-side languages: Ruby on Rails, JSP, ASP.NET, etc. Why
choose PHP?

free and open source: anyone can run a PHP-enabled server free of charge
compatible: supported by most popular web servers
simple: lots of built-in functionality; familiar syntax
available: installed on UW's servers (Dante, Webster) and most commercial web hosts

Hello, World!

The following contents could go into a file hello.php:

<?php
print "Hello, world!";
?>

Hello, world!

a block or file of PHP code begins with <?php and ends with ?>
PHP statements, function declarations, etc. appear between these endpoints

Viewing PHP output

you can't view your .php page on your local hard drive; you'll either see nothing or see the
PHP source code
if you upload the file to a PHP-enabled web server, requesting the .php file will run the
program and send you back its output

5.2: PHP Basic Syntax

5.1: Server-Side Basics
5.2: PHP Basic Syntax

5.3: Embedded PHP
5.4: Advanced PHP Syntax

Console output: print (5.2.2)

print "text";

print "Hello, World!\n";
print "Escape \"chars\" are the SAME as in Java!\n";

print "You can have
line breaks in a string.";

print 'A string can use "single-quotes". It\'s cool!';

Hello, World! Escape "chars" are the SAME as in Java! You can have line breaks in a string. A string can use

"single-quotes". It's cool!

some PHP programmers use the equivalent echo instead of print

Variables (5.2.5)

$name = expression;

$user_name = "PinkHeartLuvr78";
$age = 16;
$drinking_age = $age + 5;
$this_class_rocks = TRUE;

names are case sensitive; separate multiple words with _
names always begin with $, on both declaration and usage
always implicitly declared by assignment (type is not written)
a loosely typed language (like JavaScript or Python)

Types (5.2.3)

basic types: int, float, boolean, string, array, object, NULL
test what type a variable is with is_type functions, e.g. is_string
gettype function returns a variable's type as a string (not often needed)

PHP converts between types automatically in many cases:
string → int auto-conversion on +
int → float auto-conversion on /

type-cast with (type):
$age = (int) "21";

Arithmetic operators (5.2.4)

+ - * / % . ++ --
= += -= *= /= %= .=
many operators auto-convert types: 5 + "7" is 12

Comments (5.2.7)

single-line comment

// single-line comment

/*

multi-line comment
*/

like Java, but # is also allowed
a lot of PHP code uses # comments instead of //
we recommend # and will use it in our examples

String type (5.2.6)

$favorite_food = "Ethiopian";
print $favorite_food[2]; # h

zero-based indexing using bracket notation
string concatenation operator is . (period), not +

5 + "2 turtle doves" === 7
5 . "2 turtle doves" === "52 turtle doves"

can be specified with "" or ''

Interpreted strings

$age = 16;
print "You are " . $age . " years old.\n";
print "You are $age years old.\n"; # You are 16 years old.

strings inside " " are interpreted
variables that appear inside them will have their values inserted into the string

strings inside ' ' are not interpreted:

print 'You are $age years old.\n'; # You are $age years old.\n

if necessary to avoid ambiguity, can enclose variable in {}:

print "Today is your $ageth birthday.\n"; # $ageth not found
print "Today is your {$age}th birthday.\n";

for loop (same as Java) (5.2.9)

for (initialization; condition; update) {

 statements;
}

for ($i = 0; $i < 10; $i++) {
 print "$i squared is " . $i * $i . ".\n";
}

bool (Boolean) type (5.2.8)

$feels_like_summer = FALSE;
$php_is_rad = TRUE;

$student_count = 217;
$nonzero = (bool) $student_count; # TRUE

the following values are considered to be FALSE (all others are TRUE):
0 and 0.0 (but NOT 0.00 or 0.000)
"", "0", and NULL (includes unset variables)
arrays with 0 elements

can cast to boolean using (bool)
FALSE prints as an empty string (no output); TRUE prints as a 1

TRUE and FALSE keywords are case insensitive

if/else statement

if (condition) {

 statements;

} elseif (condition) {

 statements;
} else {

 statements;
}

NOTE: although elseif keyword is much more common, else if is also supported

while loop (same as Java)

while (condition) {

 statements;
}

do {

 statements;

} while (condition);

break and continue keywords also behave as in Java

Math operations

$a = 3;
$b = 4;
$c = sqrt(pow($a, 2) + pow($b, 2));

math functions

abs ceil cos floor log log10 max

min pow rand round sin sqrt tan

math constants

M_PI M_E M_LN2

the syntax for method calls, parameters, returns is the same as Java

