
Web Programming Step by Step
Lecture 10

More HTML Forms; Posting Data
Reading: 6.3 - 6.5

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

Reset buttons (6.2.7)

Name: <input type="text" name="name" />

Food: <input type="text" name="meal" value="pizza" />

<label>Meat? <input type="checkbox" name="meat" /></label>

<input type="reset" />

Name:

Food:

Meat?

when clicked, returns all form controls to their initial values
specify custom text on the button by setting its value attribute

Grouping input: <fieldset>, <legend> (6.2.8)

groups of input fields with optional caption (block)

<fieldset>
 <legend>Credit cards:</legend>
 <input type="radio" name="cc" value="visa" checked="checked" /> Visa
 <input type="radio" name="cc" value="mastercard" /> MasterCard
 <input type="radio" name="cc" value="amex" /> American Express
</fieldset>

Credit cards:

 Visa MasterCard American Express

fieldset groups related input fields, adds a border; legend supplies a caption

Common UI control errors

“I changed the form's HTML code ... but when I refresh, the page doesn't update!”
By default, when you refresh a page, it leaves the previous values in all form controls
it does this in case you were filling out a long form and needed to refresh/return to it
if you want it to clear out all UI controls' state and values, you must do a full refresh

Firefox: Shift-Ctrl-R
Mac: Shift-Command-R

Styling form controls (6.2.9)

element[attribute="value"] {
 property : value;

 property : value;
 ...

 property : value;
}

input[type="text"] {
 background-color: yellow;
 font-weight: bold;
}

BoratBoratBoratBorat

attribute selector: matches only elements that have a particular attribute value
useful for controls because many share the same element (input)

Hidden input parameters (6.3.2)

<input type="text" name="username" /> Name

<input type="text" name="sid" /> SID

<input type="hidden" name="school" value="UW" />
<input type="hidden" name="year" value="2048" />

 Name

 SID

an invisible parameter that is still passed to the server when form is submitted
useful for passing on additional state that isn't modified by the user

6.3: Submitting Data

6.1: Form Basics
6.2: Form Controls
6.3: Submitting Data

6.4: Processing Form Data in PHP

Problems with submitting data

<label><input type="radio" name="cc" /> Visa</label>
<label><input type="radio" name="cc" /> MasterCard</label>

Favorite Star Trek captain:
<select name="startrek">
 <option>James T. Kirk</option>
 <option>Jean-Luc Picard</option>
</select>

 Visa MasterCard

Favorite Star Trek captain:

this form submits to our handy params.php tester page
the form may look correct, but when you submit it...
[cc] => on, [startrek] => Jean-Luc Picard

The value attribute

<label><input type="radio" name="cc" value="visa" /> Visa</label>
<label><input type="radio" name="cc" value="mastercard" /> MasterCard</label>

Favorite Star Trek captain:
<select name="startrek">
 <option value="kirk">James T. Kirk</option>
 <option value="picard">Jean-Luc Picard</option>
</select>

 Visa MasterCard

Favorite Star Trek captain:

value attribute sets what will be submitted if a control is selected
[cc] => visa, [startrek] => picard

URL-encoding (6.3.1)

certain characters are not allowed in URL query parameters:
examples: " ", "/", "=", "&"

when passing a parameter, it is URL-encoded (reference table)
"Marty's cool!?" → "Marty%27s+cool%3F%21"

you don't usually need to worry about this:
the browser automatically encodes parameters before sending them
the PHP $_REQUEST array automatically decodes them
... but occasionally the encoded version does pop up (e.g. in Firebug)

Submitting data to a web server

though browsers mostly retrieve data, sometimes you want to submit data to a server
Hotmail: Send a message
Flickr: Upload a photo
Google Calendar: Create an appointment

the data is sent in HTTP requests to the server
with HTML forms
with Ajax (seen later)

the data is placed into the request as parameters

HTTP GET vs. POST requests (6.3.3)

GET : asks a server for a page or data
if the request has parameters, they are sent in the URL as a query string

POST : submits data to a web server and retrieves the server's response
if the request has parameters, they are embedded in the request's HTTP packet, not
the URL

For submitting data, a POST request is more appropriate than a GET
GET requests embed their parameters in their URLs
URLs are limited in length (~ 1024 characters)
URLs cannot contain special characters without encoding
private data in a URL can be seen or modified by users

Form POST example

<form action="http://foo.com/app.php" method="post">
 <div>
 Name: <input type="text" name="name" />

 Food: <input type="text" name="meal" />

 <label>Meat? <input type="checkbox" name="meat" /></label>

 <input type="submit" />
 <div>
</form>

Name:

Food:

Meat?

GET or POST?

if ($_SERVER["REQUEST_METHOD"] == "GET") {
 # process a GET request
 ...
} elseif ($_SERVER["REQUEST_METHOD"] == "POST") {
 # process a POST request
 ...
}

some PHP pages process both GET and POST requests
to find out which kind of request we are currently processing,
look at the global $_SERVER array's "REQUEST_METHOD" element

Uploading files (6.3.4)

<form action="http://webster.cs.washington.edu/params.php"
 method="post" enctype="multipart/form-data">
 Upload an image as your avatar:
 <input type="file" name="avatar" />
 <input type="submit" />
</form>

Upload an image as your avatar:

add a file upload to your form as an input tag with type of file
must also set the enctype attribute of the form

it makes sense that the form's request method must be post (an entire file can't be put into
a URL!)
form's enctype (data encoding type) must be set to multipart/form-data or else
the file will not arrive at the server

6.4: Processing Form Data in PHP

6.1: Form Basics
6.2: Form Controls
6.3: Submitting Data
6.4: Processing Form Data in PHP

"Superglobal" arrays (6.4.1)

Array Description

$_REQUEST parameters passed to any type of request

$_GET, $_POST parameters passed to GET and POST requests

$_SERVER, $_ENV information about the web server

$_FILES files uploaded with the web request

$_SESSION, $_COOKIE "cookies" used to identify the user (seen later)

PHP superglobal arrays contain information about the current request, server, etc.:
These are special kinds of arrays called associative arrays.

Associative arrays (6.4.1)

$blackbook = array();
$blackbook["marty"] = "206-685-2181";
$blackbook["stuart"] = "206-685-9138";
...
print "Marty's number is " . $blackbook["marty"] . ".\n";

associative array (a.k.a. map, dictionary, hash table) : uses non-integer indexes
associates a particular index "key" with a value

key "marty" maps to value "206-685-2181"
syntax for embedding an associative array element in interpreted string:

print "Marty's number is {$blackbook['marty']}.\n";

Processing an uploaded file in PHP (6.4.3)

uploaded files are placed into global array $_FILES, not $_REQUEST
each element of $_FILES is itself an associative array, containing:

name : the local filename that the user uploaded
type : the MIME type of data that was uploaded, such as image/jpeg
size : file's size in bytes
tmp_name : a filename where PHP has temporarily saved the uploaded file

to permanently store the file, move it from this location into some other file

Uploading details

<input type="file" name="avatar" />

example: if you upload borat.jpg as a parameter named avatar,
$_FILES["avatar"]["name"] will be "borat.jpg"
$_FILES["avatar"]["type"] will be "image/jpeg"
$_FILES["avatar"]["tmp_name"] will be something like "/var/tmp
/phpZtR4TI"

Processing uploaded file, example

$username = $_REQUEST["username"];
if (is_uploaded_file($_FILES["avatar"]["tmp_name"])) {
 move_uploaded_file($_FILES["avatar"]["tmp_name"], "$username/avatar.jpg");
 print "Saved uploaded file as $username/avatar.jpg\n";
} else {
 print "Error: required file not uploaded";
}

functions for dealing with uploaded files:
is_uploaded_file(filename)
returns TRUE if the given filename was uploaded by the user
move_uploaded_file(from, to)
moves from a temporary file location to a more permanent file

proper idiom: check is_uploaded_file, then do move_uploaded_file

Including files: include (5.4.2)

include("filename");

include("header.php");

inserts the entire contents of the given file into the PHP script's output page
encourages modularity
useful for defining reused functions needed by multiple pages

