
Web Programming Step by Step
Lecture 12

Object-Oriented PHP
References: PHP.net, Developer.com, KillerPHP, DevX

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

Why use classes and objects?

PHP is a primarily procedural language
small programs are easily written without adding any classes or objects
larger programs, however, become cluttered with so many disorganized functions
grouping related data and behavior into objects helps manage size and complexity

Constructing and using objects

construct an object
$name = new ClassName(parameters);

access an object's field (if the field is public)
$name->fieldName

call an object's method
$name->methodName(parameters);

$zip = new ZipArchive();
$zip->open("moviefiles.zip");
$zip->extractTo("images/");
$zip->close();

the above code unzips a file
test whether a class is installed with class_exists

Object example: Fetch file from web

create an HTTP request to fetch student.php
$req = new HttpRequest("student.php", HttpRequest::METH_GET);
$params = array("first_name" => $fname, "last_name" => $lname);
$req->addPostFields($params);

send request and examine result
$req->send();
$http_result_code = $req->getResponseCode(); # 200 means OK
print "$http_result_code\n";
print $req->getResponseBody();

PHP's HttpRequest object can fetch a document from the web

Class declaration syntax

class ClassName {
 # fields - data inside each object
 public $name; # public field
 private $name; # private field

 # constructor - initializes each object's state
 public function __construct(parameters) {
 statement(s);
 }

 # method - behavior of each object
 public function name(parameters) {

 statements;
 }
}

inside a constructor or method, refer to the current object as $this

Class example

<?php
class Point {
 public $x;
 public $y;

 # equivalent of a Java constructor
 public function __construct($x, $y) {
 $this->x = $x;
 $this->y = $y;
 }

 public function distance($p) {
 $dx = $this->x - $p->x;
 $dy = $this->y - $p->y;
 return sqrt($dx * $dx + $dy * $dy);
 }

 # equivalent of Java's toString method
 public function __toString() {
 return "(" . $this->x . ", " . $this->y . ")";
 }
}
?>

Class usage example

<?php
this code could go into a file named use_point.php
include("Point.php");

$p1 = new Point(0, 0);
$p2 = new Point(4, 3);
print "Distance between $p1 and $p2 is " . $p1->distance($p2) . "\n\n";

var_dump($p2); # var_dump prints detailed state of an object
?>

Distance between (0, 0) and (4, 3) is 5

object(Point)[2]
 public 'x' => int 4
 public 'y' => int 3

$p1 and $p2 are references to Point objects

Basic inheritance

class ClassName extends ClassName {

 ...
}

class Point3D extends Point {
 public $z;

 public function __construct($x, $y, $z) {
 parent::__construct($x, $y);
 $this->z = $z;
 }

 ...
}

the given class will inherit all data and behavior from ClassName

Static methods, fields, and constants

static $name = value; # declaring a static field
const $name = value; # declaring a static constant

declaring a static method
public static function name(parameters) {
 statements;
}

ClassName::methodName(parameters); # calling a static method (outside class)
self::methodName(parameters); # calling a static method (within class)

static fields/methods are shared throughout a class rather than replicated in every object

Abstract classes and interfaces

interface InterfaceName {
 public function name(parameters);
 public function name(parameters);
 ...
}

class ClassName implements InterfaceName { ...

abstract class ClassName {
 abstract public function name(parameters);
 ...
}

interfaces are supertypes that specify method headers without implementations
cannot be instantiated; cannot contain function bodies or fields
enables polymorphism between subtypes without sharing implementation code

abstract classes are like interfaces, but you can specify fields, constructors, methods
also cannot be instantiated; enables polymorphism with sharing of implementation
code

