
Web Programming Step by Step
Lecture 17

Events
Reading: 9.1 - 9.3

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

9.2: Event-Handling

9.1: The Prototype JavaScript Library
9.2: Event-Handling

The keyword this (8.1.3)

this.fieldName // access field

this.fieldName = value; // modify field

this.methodName(parameters); // call method

all JavaScript code actually runs inside of an object
by default, code runs inside the global window object

all global variables and functions you declare become part of window
the this keyword refers to the current object

Event handler binding

function pageLoad() {

 $("ok").onclick = okayClick; // bound to okButton here
}

function okayClick() { // okayClick knows what DOM object
 this.innerHTML = "booyah"; // it was called on
}

window.onload = pageLoad;

event handlers attached unobtrusively are bound to the element
inside the handler, that element becomes this (rather than the window)

Fixing redundant code with this

<fieldset>

 <label><input type="radio" name="ducks" value="Huey" /> Huey</label>
 <label><input type="radio" name="ducks" value="Dewey" /> Dewey</label>
 <label><input type="radio" name="ducks" value="Louie" /> Louie</label>
</fieldset>

function processDucks() {

 if ($("huey").checked) {

 alert("Huey is checked!");

 } else if ($("dewey").checked) {

 alert("Dewey is checked!");

 } else {

 alert("Louie is checked!");

 }

 alert(this.value + " is checked!");
}

if the same function is assigned to multiple elements, each gets its own bound copy

More about events

abort blur change click dblclick error focus

keydown keypress keyup load mousedown mousemove mouseout

mouseover mouseup reset resize select submit unload

the click event (onclick) is just one of many events that can be handled
problem: events are tricky and have incompatibilities across browsers

reasons: fuzzy W3C event specs; IE disobeying web standards; etc.
solution: Prototype includes many event-related features and fixes

Attaching event handlers the Prototype way

element.onevent = function;

element.observe("event", "function");

// call the playNewGame function when the Play button is clicked
$("play").observe("click", playNewGame);

to use Prototype's event features, you must attach the handler using the DOM element
object's observe method (added by Prototype)
pass the event of interest and the function to use as the handler
handlers must be attached this way for Prototype's event features to work

observe substitutes for addEventListener (not supported by IE)

Attaching multiple event handlers with $$

// listen to clicks on all buttons with class "control" that
// are directly inside the section with ID "game"
window.onload = function() {

 var gameButtons = $$("#game > button.control");
 for (var i = 0; i < gameButtons.length; i++) {

 gameButtons[i].observe("click", gameButtonClick);
 }

};

function gameButtonClick() { ... }

you can use $$ and other DOM walking methods to unobtrusively attach event handlers to
a group of related elements in your window.onload code

The Event object

function name(event) {
 // an event handler function ...
}

Event handlers can accept an optional parameter to represent the event that is occurring.
Event objects have the following properties / methods:

method / property name description

type what kind of event, such as "click" or "mousedown"

element() * the element on which the event occurred

stop() ** cancels an event

stopObserving() removes an event handler

* replaces non-standard srcElement and which properties
** replaces non-standard return false;, stopPropagation, etc.

Mouse events (9.2.2)

clicking

click user presses/releases mouse button on this element

dblclick user presses/releases mouse button twice on this element

mousedown user presses down mouse button on this element

mouseup user releases mouse button on this element

movement

mouseover mouse cursor enters this element's box

mouseout mouse cursor exits this element's box

mousemove mouse cursor moves around within this element's box

Mouse event objects

The event parameter passed to a mouse event handler has the following properties:

property/method description

clientX, clientY coordinates in browser window

screenX, screenY coordinates in screen

offsetX, offsetY coordinates in element

pointerX(),
pointerY() *

coordinates in entire web page

isLeftClick() ** true if left button was pressed

* replaces non-standard properties pageX and pageY
** replaces non-standard properties button and which

Mouse event example

<pre id="target">Move the mouse over me!</pre>

window.onload = function() {

 $("target").observe("mousemove", showCoords);

};

function showCoords(event) {
 this.innerHTML =

 "pointer: (" + event.pointerX() + ", " + event.pointerY() + ")\n"
 + "screen : (" + event.screenX + ", " + event.screenY + ")\n"
 + "client : (" + event.clientX + ", " + event.clientY + ")";
}

Move the mouse over me!

