
Web Programming Step by Step
Lecture 19

Ajax
Reading: 10.1 - 10.2

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

Synchronous web communication (10.1)

synchronous: user must wait while new pages load
the typical communication pattern used in web pages (click, wait, refresh)

Web applications and Ajax

web application: a dynamic web site that mimics the feel of a
desktop app

presents a continuous user experience rather than disjoint
pages
examples: Gmail, Google Maps, Google Docs and
Spreadsheets, Flickr, A9

Ajax: Asynchronous JavaScript and XML
not a programming language; a particular way of using
JavaScript
downloads data from a server in the background
allows dynamically updating a page without making the user
wait
avoids the "click-wait-refresh" pattern
examples: UW's CSE 14x Diff Tool, Practice-It; Google Suggest

Asynchronous web communication

asynchronous: user can keep interacting with page while data loads
communication pattern made possible by Ajax

XMLHttpRequest (and why we won't use it)

JavaScript includes an XMLHttpRequest object that can fetch files from a web server
supported in IE5+, Safari, Firefox, Opera, Chrome, etc. (with minor compatibilities)

it can do this asynchronously (in the background, transparent to user)
the contents of the fetched file can be put into current web page using the DOM

sounds great!...
... but it is clunky to use, and has various browser incompatibilities
Prototype provides a better wrapper for Ajax, so we will use that instead

A typical Ajax request

user clicks, invoking an event handler1.
handler's code creates an XMLHttpRequest
object

2.

XMLHttpRequest object requests page from
server

3.

server retrieves appropriate data, sends it back4.
XMLHttpRequest fires an event when data
arrives

this is often called a callback
you can attach a handler function to this event

5.

your callback event handler processes the data and displays it6.

Prototype's Ajax model (10.2.4)

new Ajax.Request("url",
 {

 option : value,

 option : value,
 ...

 option : value
 }

);

construct a Prototype Ajax.Request object to request a page from a server using Ajax
constructor accepts 2 parameters:

the URL to fetch, as a String,1.
a set of options, as an array of key : value pairs in {} braces (an anonymous JS
object)

2.

hides icky details from the raw XMLHttpRequest; works well in all browsers

Prototype Ajax methods and properties

options that can be passed to the Ajax.Request constructor

option description

method how to fetch the request from the server (default "post")

parameters query parameters to pass to the server, if any

asynchronous (default true), contentType, encoding, requestHeaders

events in the Ajax.Request object that you can handle

event description

onSuccess request completed successfully

onFailure request was unsuccessful

onException request has a syntax error, security error, etc.

onCreate, onComplete, on### (for HTTP error code ###)

Basic Prototype Ajax template

 new Ajax.Request("url",
 {

 method: "get",

 onSuccess: functionName
 }

);

 ...

function functionName(ajax) {

 do something with ajax.responseText;
}

most Ajax requests we'll do in this course are GET requests
attach a handler to the request's onSuccess event
the handler takes an Ajax response object, which we'll name ajax, as a parameter

The Ajax response object

property description

status the request's HTTP error code (200 = OK, etc.)

statusText HTTP error code text

responseText the entire text of the fetched page, as a String

responseXML the entire contents of the fetched page, as an XML DOM tree (seen
later)

function handleRequest(ajax) {

 alert(ajax.responseText);

}

most commonly property is responseText, to access the fetched page

XMLHttpRequest security restrictions

cannot be run from a web page stored on your hard drive
can only be run on a web page stored on a web server
can only fetch files from the same site that the page is on

www.foo.com/a/b/c.html can only fetch from www.foo.com

Handling Ajax errors

 new Ajax.Request("url",
 {

 method: "get",

 onSuccess: functionName,
 onFailure: ajaxFailure,
 onException: ajaxFailure
 }

);

 ...

function ajaxFailure(ajax, exception) {
 alert("Error making Ajax request:" +

 "\n\nServer status:\n" + ajax.status + " " + ajax.statusText +

 "\n\nServer response text:\n" + ajax.responseText);

 if (exception) {

 throw exception;

 }

}

for user's (and developer's) benefit, show an error message if a request fails

Debugging Ajax code

Net tab shows each request, its parameters, response, any errors
expand a request with + and look at Response tab to see Ajax result

Creating a POST request

new Ajax.Request("url",
 {

 method: "post", // optional

 parameters: { name: value, name: value, ..., name: value },

 onSuccess: functionName,

 onFailure: functionName,

 onException: functionName
 }

);

Ajax.Request can also be used to post data to a web server
method should be changed to "post" (or omitted; post is default)
any query parameters should be passed as a parameters parameter

written between {} braces as a set of name : value pairs (another anonymous object)
get request parameters can also be passed this way, if you like

Prototype's Ajax Updater

 new Ajax.Updater(

 "id",

 "url",
 {

 method: "get"

 }

);

Ajax.Updater fetches a file and injects its content into an element as innerHTML
additional (1st) parameter specifies the id of element to inject into

