
Web Programming Step by Step
Lecture 25

Cookies and Sessions
References: tizag.com sessions, cookies; Codewalkers

References: SQL syntax reference, w3schools tutorial

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

Stateful client/server interaction

Sites like amazon.com seem to "know who I am." How do they
do this? How does a client uniquely identify itself to a server, and
how does the server provide specific content to each client?

HTTP is a stateless protocol; it simply allows a
browser to request a single document from a web
server
in these slides, we'll learn about pieces of data
called cookies used to work around this problem,
which are used as the basis of higher-level
sessions between clients and servers

What is a cookie?

cookie: a small amount of information sent by a server to a browser,
and then sent back by the browser on future page requests
cookies have many uses:

authentication
user tracking
maintaining user preferences, shopping carts, etc.

a cookie's data consists of a single name/value pair, sent in the header
of the client's HTTP GET or POST request

How cookies are sent

when the browser requests a page, the server may
send back a cookie(s) with it
if your server has previously sent any cookies to
the browser, the browser will send them back on
subsequent requests

alternate model: client-side JavaScript code can
set/get cookies

Myths about cookies

Myths:
Cookies are like worms/viruses and can erase data from the user's hard disk.
Cookies are a form of spyware and can steal your personal information.
Cookies generate popups and spam.
Cookies are only used for advertising.

Facts:
Cookies are only data, not program code.
Cookies cannot erase or read information from the user's computer.
Cookies are usually anonymous (do not contain personal information).
Cookies CAN be used to track your viewing habits on a particular site.

How long does a cookie exist?

session cookie : the default type; a temporary cookie that is stored only in the browser's
memory

when the browser is closed, temporary cookies will be erased
can not be used for tracking long-term information
safer, because no programs other than the browser can access them

persistent cookie : one that is stored in a file on the browser's computer
can track long-term information
potentially less secure, because users (or programs they run) can open cookie files,
see/change the cookie values, etc.

Where are the cookies on my computer?

IE: HomeDirectory\Cookies
e.g. C:\Documents and Settings\jsmith\Cookies
each is stored as a .txt file similar to the site's domain name

Firefox: HomeDirectory\.mozilla\firefox\???.default\cookies.txt
view cookies in Firefox preferences: Privacy, Show Cookies...

Cookies in JavaScript

document.cookie = "username=smith;password=12345";

<!-- using the instructor-provided Cookies.js class -->
<script src="Cookies.js" type="text/javascript"></script>

Cookies.set("username", "smith");
...
alert(Cookies.get("username")); // smith

JS has a global document.cookie field (a string)
you can manually set/get cookie data from this field (sep. by ;), and it will be saved in the
browser

we have written a Cookies.js helper class with methods set, get, exists, remove

Setting a cookie in PHP

setcookie("name", "value");

setcookie("username", "martay");
setcookie("favoritecolor", "blue");

setcookie causes your script to send a cookie to the user's browser
setcookie must be called before any output statements (HTML blocks, print, or
echo)
you can set multiple cookies (20-50) per user, each up to 3-4K bytes

technically, a cookie is just part of an HTTP header, and it could be set using PHP's
header function (but this is less convenient, so you would not want to do this):

header("Set-Cookie: username=martay; path=/; secure");

Retrieving information from a cookie

$variable = $_COOKIE["name"]; # retrieve value of the cookie

if (isset($_COOKIE["username"])) {
 $username = $_COOKIE["username"];
 print("Welcome back, $username.\n");
} else {
 print("Never heard of you.\n");
}
print("All cookies received:\n");
print_r($_COOKIE);

any cookies sent by client are stored in $_COOKIES associative array
use isset function to see whether a given cookie name exists

unset function deletes a cookie

Setting a persistent cookie in PHP

setcookie("name", "value", timeout);

$expireTime = time() + 60*60*24*7; # 1 week from now
setcookie("CouponNumber", "389752", $expireTime);
setcookie("CouponValue", "100.00", $expireTime);

to set a persistent cookie, pass a third parameter for its timeout in seconds
time function returns the current time in seconds

date function can convert a time in seconds to a readable date

Removing a persistent cookie

setcookie("name", "", time() - 1);

setcookie("CouponNumber", "", time() - 1);

if the server wants to remove a persistent cookie, it should set it again, passing a timeout that
is prior to the present time

What is a session?

session: an abstract concept to represent a series of HTTP requests and responses between
a specific Web browser and server

HTTP doesn't support the notion of a session, but PHP does
sessions vs. cookies:

a cookie is data stored on the client
a session's data is stored on the server (only 1 session per client)

sessions are often built on top of cookies:
the only data the client stores is a cookie holding a unique session ID
on each page request, the client sends its session ID cookie, and the server uses this to
find and retrieve the client's session data

How sessions are established

client's browser makes an initial request to the
server
server notes client's IP address/browser, stores
some local session data, and sends a session ID
back to client
client sends that same session ID back to server
on future requests
server uses session ID to retrieve the data for the
client's session later, like a ticket given at a
coat-check room

Sessions in PHP: session_start

session_start();

session_start signifies your script wants a session with the user
must be called at the top of your script, before any HTML output is produced

when you call session_start:
if the server hasn't seen this user before, a new session is created
otherwise, existing session data is loaded into $_SESSION associative array
you can store data in $_SESSION and retrieve it on future pages

complete list of PHP session functions

Accessing session data

$_SESSION["name"] = value; # store session data
$variable = $_SESSION["name"]; # read session data
if (isset($_SESSION["name"])) { # check for session data

if (isset($_SESSION["points"])) {
 $points = $_SESSION["points"];
 print("You've earned $points points.\n");
} else {
 $_SESSION["points"] = 0; # default
}

the $_SESSION associative array reads/stores all session data
use isset function to see whether a given value is in the session

Where is session data stored?

on the client, the session ID is stored as a cookie
with the name PHPSESSID
on the server, session data are stored as temporary
files such as /tmp/sess_fcc17f071...
you can find out (or change) the folder where
session data is saved using the
session_save_path function
for very large applications, session data can be
stored into a SQL database (or other destination)
instead using the
session_set_save_handler function

Browsers that don't support cookies

session_start(); # same as usual

Generate a URL to link to one of our site's pages
(you probably won't ever need to do this)
$orderUrl = "/order.php?PHPSESSID=" . session_id();

if a client's browser doesn't support cookies, it can still send a session ID as a query string
parameter named PHPSESSID

this is done automatically; session_start detects whether the browser supports
cookies and chooses the right method

if necessary (such as to build a URL for a link on the page), the server can find out the
client's session ID by calling the session_id function

Session timeout

because HTTP is stateless, it is hard for the server to know when a user has finished a
session
ideally, user explicitly logs out, but many users don't
client deletes session cookies when browser closes
server automatically cleans up old sessions after a period of time

old session data consumes resources and may present a security risk
adjustable in PHP server settings or with session_cache_expire function
you can explicitly delete a session by calling session_destroy

Practice problem: remembering query

Modify the movie.php movie search script from previous lectures so that it remembers
the current user's last query (if any), and offers the user a chance to search for it again, such
as:

Welcome back! Would you like to repeat your recent search for Fight Club?
Pretend that the movie-search program is running on a system that wants to limit repeated
usage by particular users. Add code so that a given user can only conduct one session per
day.

