
Ruby on Rails

CSE 190M, Spring 2009

Week 6

Overview

• How to use a database

• Demo creating a blog application on Rails

• Explain how the application works and how we can

modify itmodify it

• Show you how to get your application up and

running on webster

• Extend the homework #5 due date!

Using a Database

• Install MySQL (this is already installed on Webster)

• Install the "mysql" gem (also on Webster)
gem install mysql

• Create your Rails app• Create your Rails app
rails –d mysql my_app

• Modify config/database.yml to have the correct

username and password for your database

• Open MySQL and create the database for your

application
mysql > create database my_app_development

Sample database.yml

• This sample database.yml example uses

the same database for development,

test, and production environments

• By default, each environment (prod,

Sample database.yml

defaults: &defaults

adapter: mysql

database: my_app_db

username: boot

password: hackme

host: localhost• By default, each environment (prod,

test, dev) have their own database so as

not to interfere with each other

• This sample specifies a database with

the name "my_app_db", with user

"boot" and password "hackme"

host: localhost

development:

<<: *defaults

production:

<<: *defaults

Web Applications

• Last week, we saw how to create a static, custom

homepage

• We had to create a Model, View, and Controller to

deal with the request

• In the spirit of Ruby, Rails represents everything as

objects

• In a large, dynamic web app, everything would be

representing as an object (model). For each model,

there may be many ways to display it (views), and we

would want these to communicate (controllers)

Scaffold

• We could write a web app by hand, creating all

models, views, and controllers by hand

• However, Rails recognizes that there is standard

functionality that is done over and over again

• To avoid doing all of this by hand, Rails has the ability

to generate a "scaffold", or skeleton code, to fit our

object specs

• In the application root, use the scaffold to generate

the files automatically
ruby script/generate scaffold Object field1:datatype field2:datatype

e.g. ruby script/generate scaffold Entry title:string data:text

HTTP

• HTTP – hypertext transfer protocol

• Establishes a client-server relationship and details

how they should communicate to exchange

information

– Client makes and HTTP request

– Server returns a response

• We have already seen some HTTP request methods

– GET, POST

• There are others

– PUT, DELETE, etc.

Scaffold and HTTP

• The scaffolding generates code that corresponds to

the HTTP request methods

• The corresponding code deals with the requests in a

standardized way
– List All (GET /entries) – shows all entries

– Show (GET /entries/1) – shows details of a particular entry

– Edit (GET /entries/1/edit) – edits a particular entry

– Update (PUT /entries/1) – updates a particular entry

– New (POST /entries) – creates a new entry

– Delete (DELETE /entries/1) – deletes a particular entry

Scaffold and HTTP

• Routing standardization occurs in the routes.rb file

• The routes.rb file specifies which controller and action

(method) should handle each type of request

map.resources :entries

• The code to deal with the requests are found in the

controller's methods (index, show, create, delete, etc.)

• The page to be displayed has a file name corresponding to the

action being used (index.html.erb, show.html.erb, etc.)

Using the Generated Code

• We can modify the models, views, and controllers as

we feel fit

• The scaffold also generated code to create the

necessary tables in our database

(my_app/db/migrate).

• To actually run this code and update our database,

run the following command in the application (we do

not have to touch the database ourselves)
rake db:migrate

• Start our app and view the newly created scaffolding
localhost:3000/entries

Rails on Webster

• In your public_html directory, make a folder for your Ruby

apps

/home/rctucker/ruby_apps

• Create your Rails app in this folder

rails –d mysql my_apprails –d mysql my_app

• In your public_html folder, make a symlink from the public

folder of your app to a folder with the name of your app

ln -s ruby_apps/my_app/public my_app

• Create/modify .htaccess file in your public_html folder. Add

the following line (using your username and application name

instead)
RailsBaseURI /rctucker/my_app

• View app at webster.cs.washington.edu/username/app_name

Error Logging

• Anytime an error occurs, it is logged in the

application

• You can find a stack trace of the errors in the • You can find a stack trace of the errors in the

application logs
my_app/logs

