

Control flow

Michael Ernst
UW CSE 190p
Summer 2012

Repeating yourself

Making decisions

Temperature conversion chart

Recall exercise from previous lecture

```
fahr = 30
cent = (f-32)/9.0*5
print fahr, cent
fahr = 40
cent = (f-32)/9.0*5
print fahr, cent
fahr = 50
cent = (f-32)/9.0*5
print fahr, cent
fahr = 60
cent = (f-32)/9.0*5
print fahr, cent
fahr = 70
cent = (f-32)/9.0*5
print fahr, cent
print "All done"
```

Output:
30-1.11
404.44
5010.0
6015.56
7021.11

All done

Temperature conversion chart

Revisit exercise from previous lecture

The body can be multiple statements

Indentation is significant

- Every statement in the body must have exactly the same indentation
for i in [3,4,5]: print "Start body"
Error! [print i print i*I
- Compare the results of these loops:
for f in $[30,40,50,60,70]$:
print f, (f-32)/9.0*5
print "All done"
for f in $[30,40,50,60,70]$:
print f, (f-32)/9.0*5
"All done"

Fix this loop

```
# Goal: print 1, 2, 3, ..., 48, 49, 50
for tens_digit in [0, 1, 2, 3, 4]:
    for ones_digit in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
        print tens_digit * 10 + ones_digit
```

What does it actually print?
How can we change it to correct its output?

Moral: Watch out for edge conditions (beginning or end of loop)

How a loop is executed (2 versions)

Transformation approach:

1. Evaluate sequence expression
2. Write an assignment to the loop variable for each sequence element
3. Write a copy of the loop after each assignment
4. Execute the resulting statements

Direct approach:

1. Evaluate sequence expression
2. While there are sequence elements left:
3. Assign the loop variable to the first remaining sequence element
4. Execute the loop body

Another example of

the transformation approach

Key idea:

1. Assign each sequence element to the loop variable
2. Duplicate the body
```
for i in [0,1]: i = 0 i = 0
    print "Outer", i print "Outer", i print "Outer", i
    for j in [2,3]: for j in [2,3]: j = 2
        print " Inner", j print " Inner", j print " Inner", j
            i = 1 j = 3
            print "Outer", i print " Inner", j
            for j in [2,3]: i = 1
    print " Inner", j print "Outer", i
for j in [2,3]:
    print " Inner", j
```


Test your understanding of loops

Puzzle 1:

Output:
for i in [0,1]:
print i
0
1
print i 1
Puzzle 2:
i $=5$
for i in []: print i
Puzzle 3:
(no output)
for in in 0,1$]$
print "Outer", i for i in [2,3]:
print "Inner", i\} inner loop loop print "Outer", i

Reusing loop variable (don't do this)

Outer 0 Inner 2 Inner 3
Outer 3
Outer 1 Inner 2 Inner 3
Outer 3

The range function

A typical for loop does not use an explicit list:

for i in range (5) $\underset{\substack{\text { The list } \\[0,1,2,3,4]}}{\substack{\text { an }}}$
... body Upper limit
(exclusive)
range (5) $=[0,1,2,3,4]$

$\begin{array}{c}\text { Lowerl limit } \\ \text { (inclusive }\end{array}$

range (1,5) $=[1,2,3,4]$
step (distance
between elements)
range $(1,10,2)=[1,3,5,7,9]$

Making decisions

- How do we compute absolute value? abs(5) $=5$ abs(0) $=0$ abs(-22) $=22$

Absolute value solution

If the value is negative, negate it.
Otherwise, use the original value.

The if body can be any statements

The then clause or the else clause is executed

if is_prime(x):

$$
y=x / 0
$$

else

$$
\mathbf{y}=x * x
$$

