

Control flow

Michael Ernst UW CSE 190p Summer 2012

Repeating yourself

Making decisions

Recall exercise from previous lecture

```
fahr = 30
cent = (f-32)/9.0*5
print fahr, cent
fahr = 40
cent = (f-32)/9.0*5
print fahr, cent
fahr = 50
cent = (f-32)/9.0*5
print fahr, cent
fahr = 60
cent = (f-32)/9.0*5
print fahr, cent
fahr = 70
cent = (f-32)/9.0*5
print fahr, cent
print "All done"
```

<u>Output:</u>		
30	-1.11	
40	4.44	
50	10.0	
60	15.56	
70	21.11	
All	done	

Revisit exercise from previous lecture

The body can be multiple statements

Outer 1

Indentation is significant

• Every statement in the body must have exactly the same indentation

```
for i in [3,4,5]:
    print "Start body"
Error! print i
    print i*I
    Compare the results of these loops:
    for f in [30,40,50,60,70]:
        print f, (f-32)/9.0*5
    print "All done"
```

```
for f in [30,40,50,60,70]:
    print f, (f-32)/9.0*5
    "All done"
```

Fix this loop

Goal: print 1, 2, 3, ..., 48, 49, 50
for tens_digit in [0, 1, 2, 3, 4]:
 for ones_digit in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
 print tens_digit * 10 + ones_digit

What does it actually print?

How can we change it to correct its output?

Moral: Watch out for *edge conditions* (beginning or end of loop)

How a loop is executed (2 versions)

Transformation approach:

- **1.** Evaluate sequence expression
- 2. Write an assignment to the loop variable for each sequence element
- **3.** Write a copy of the loop after each assignment
- 4. Execute the resulting statements

Direct approach:

- 1. Evaluate sequence expression
- 2. While there are sequence elements left:
 - 1. Assign the loop variable to the first remaining sequence element
 - 2. Execute the loop body

Another example of the transformation approach

Key idea:

- 1. Assign each sequence element to the loop variable
- 2. Duplicate the body

Test your understanding of loops

Puzzle 1:	Output:
for i in [0,1]: print i print i	0 1 1
Puzzle 2: i = 5	
for i in []: print i Reusing loop variable	(no output)
Puzzle 3: for i in [0,1]:	Outer 0 Inner 2 Inner 3
<pre>print "Outer", i for i in [2,3]:</pre>	Outer 3 Outer 1 Inner 2
print " Inner", i loop body print "Outer", i body	Inner 3 Outer 3

The range function

Making decisions

• How do we compute absolute value?

abs(5) = 5abs(0) = 0abs(-22) = 22

Absolute value solution

If the value is negative, negate it. Otherwise, use the original value.

The if body can be any statements

The then clause *or* the else clause is executed

if is_prime(x):
 y = x / 0
else

$$y = x * x$$