
Collections

Michael Ernst

CSE 190p

University of Washington

Needed for Homework 4

(social networking assignment)

• Collections: lists, sets, dictionaries

• Sorting

• Graphs

Outline for today

• Collections (built-in data structures)

– Lists

• Sorting

– Sets

• Order independence

– Dictionaries (mappings)

• Graphs

How to evaluate list expressions

There are two new forms of expression:

• [a, b, c, d] list creation
– To evaluate:

• evaluate each element to a value, from left to right

• make a list of the values

– The elements can be arbitrary values, including lists
• ["a", 3, 3.14*r*r, fahr_to_cent(-40), [3+4, 5*6]]

• a[b] list indexing or dereferencing
– To evaluate:

• evaluate the list expression to a value

• evaluate the index part to a value

• if the list value is not a list, execution terminates with an error

• if the element is not in range (not a valid index), execution terminates
with an error

• the value is the given element of the list value

List

expression

Index

expression

List slicing

mylist[startindex : endindex] evaluates

to a sublist of the original list

– mylist[index] evaluates to an element of the

original list

• Arguments are like those to the range function

– start index is inclusive

– end index is exclusive

– optional step argument: mylist[st : end : step]

• See handout for practice problems

Sorting

hamlet = "to be or not to be that is the
question whether tis nobler in the mind to
suffer".split()

print "hamlet:", hamlet

print "sorted(hamlet):", sorted(hamlet)
print "hamlet:", hamlet

print "hamlet.sort():", hamlet.sort()
print "hamlet:", hamlet

• Lists are mutable – they can be changed
– including by functions

Customizing the sort order

Goal: sort a list of names by last name

names = ["Isaac Newton", "Albert Einstein", "Niels Bohr", "Charles
Darwin", "Louis Pasteur", "Sigmund Freud", "Galileo Galilei"]

print "names:", names

This does not work:

print "sorted(names):", sorted(names)

When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"

A sort key is a different value that you use to sort a list, instead of the actual values in the list

def last_name(str):
return str.split(" ")[1]

print 'last_name("Isaac Newton"):', last_name("Isaac Newton")

Two ways to use a sort key

1. Create a different list that contains the sort key, sort it, then extract the part you care about

keyed_names = [[last_name(name), name] for name in names]

print "keyed_names:", keyed_names

print "sorted(keyed_names):", sorted(keyed_names)

print "sorted(keyed_names, reverse = True):"

print sorted(keyed_names, reverse = True)

(This works because Python compares two elements that are lists elementwise.)

sorted_names = [keyed_name[1] for keyed_name in sorted(keyed_names, reverse = True)]

print "sorted_names:", sorted_names

2. Supply the key argument to the sorted function or the sort function

print "sorted(names, key = last_name):"

print sorted(names, key = last_name)

print "sorted(names, key = last_name, reverse = True):"

print sorted(names, key = last_name, reverse = True)

Sets

• Mathematical set: a collection of values, without duplicates or order

• Two ways to create a set:
– Direct mathematical syntax

odd = { 1, 3, 5 }
prime = { 2, 3, 5 }
Cannot express empty set: “{}” means something else �

– Construct from a list
odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([])

Python always prints using this syntax

• Order does not matter
{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates
set([3,1,4,1,5]) == { 5, 4, 3, 1 }

Set operations

odd = { 1, 3, 5 }
prime = { 2, 3, 5 }

• union ∪ Python: | odd | prime ⇒ { 1, 2, 3, 5 }

• intersection ∩ Python: & odd & prime ⇒ { 3, 5 }

• difference \ or - Python: - odd – prime ⇒ { 1 }

• membership ∈ Python: in 4 in prime ⇒ False

• Iteration over sets:
iterates over items in arbitrary order
for item in myset:
…

• Add one element to a set:
myset.add(newelt)
myset = myset | {newelt}

• Think in terms of set operations,
not in terms of iteration and element operations
– Shorter, clearer, less error-prone, faster

Practice with sets

Not every value may be placed in a set

• Set elements must be immutable values
– int, float, bool, string, tuple

– not: list, set, dictionary

• Goals
– after “myset.add(x)”, x in myset⇒ True

– y in myset always evaluates to the same value

Both conditions should hold until myset is changed

• Mutable elements can violate these goals
list1 = ["a", "b"]
list2 = list1
list3 = ["a", "b"]
myset = {list1} ⇐ Hypothetical; actually illegal in Python

list1 in myset ⇒ True

list3 in myset ⇒ True

list2.append("c")
list1 in myset ⇒ ???

list3 in myset ⇒ ???

Computing a histogram

• Recall exercise from previous lecture:
For each word in a text, record the number of times that
word appears

• Without thinking about any Python data
structures, how would you solve this?
– Always start by thinking about the data,

not by thinking about how you would implement it

hamlet = "to be or not to be that is
the question whether tis nobler in the
mind to suffer".split()

Dictionaries or mappings

• A dictionary maps each key to a value

d = { }
us_wars1 = {

"Revolutionary" : [1775, 1783],
"Mexican" : [1846, 1848],
"Civil" : [1861, 1865] }

us_wars2 = {
1783: "Revolutionary",
1848: "Mexican",
1865: "Civil" }

• Syntax just like arrays, for accessing and setting:

us_wars2[1783][1:10] ⇒ “evolution”

us_wars1["WWI"] = [1917, 1918]
• Order does not matter

{ 5 : 25, 6 : 36, 7 : 49 } == { 7 : 49, 5: 25, 6 : 36 }

Not every value is allowed to be a key

• Keys must be immutable values
– int, float, bool, string, tuple

– not: list, set, dictionary

• Goals
– after “mydict[x] = y”, mydict[x]⇒ y

– if a == b, then mydict[a] == mydict[b]
These conditions should hold until mydict is changed

• Mutable keys can violate these goals
list1 = ["a", "b"]
list2 = list1
list3 = ["a", "b"]
mydict = {}
mydict[list1] = "z" ⇐ Hypothetical; actually illegal in Python

mydict[list3] ⇒ "z"
list2.append("c")
mydict[list1] ⇒ ???

mydict[list3] ⇒ ???

Graphs

• A graph can be thought of as:

– a collection of edges

– for each node, a collection of neighbors

