Recursion

To seal: moisten flap, fold over, and seal

Michael Ernst
CSE 190p

University of Washington

Three recursive algorithms

- Sorting
- GCD (greatest common divisor)
- Exponentiation

Used in cryptography, which protects information
and communication

Sorting a list

- Python's sorted function returns a sorted version of a list. sorted ([4, 1, 5, 2, 7]) $\Rightarrow[1,2,4,5,7]$
- How could you implement sorted?
- Idea ("quicksort", invented in 1960):
- Choose an arbitrary element (the "pivot")
- Collect the smaller items and put them on its left
- Collect the larger items and put them on its right

First version of quicksort

```
def quicksort(thelist):
    pivot = thelist[0]
    smaller = [elt for elt in thelist if elt < pivot]
    larger = [elt for elt in thelist if elt > pivot]
    return smaller + [pivot] + larger
print quicksort([4, 1, 5, 2, 7])
```

There are three problems with this definition Write a test case for each problem

Near-final version of quicksort

```
def quicksort(thelist):
    if len(thelist) < 2:
        return thelist
    pivot = thelist[0]
    smaller = [elt for elt in thelist if elt < pivot]
    larger = [elt for elt in thelist if elt > pivot]
    return quicksort(smaller) + [pivot] + quicksort(larger)
```

How can we fix the problem with duplicate elements?

Handling duplicate pivot items

```
def quicksort(thelist):
    if len(thelist) < 2:
        return thelist
    pivot = thelist[0]
    smaller = [elt for elt in thelist if elt < pivot]
    pivots = [elt for elt in thelist if elt == pivot]
    larger = [elt for elt in thelist if elt > pivot]
    return quicksort(smaller) + pivots + quicksort(larger)
```

```
def quicksort(thelist):
    if len(thelist) < 2:
        return thelist
    pivot = thelist[0]
    smaller = [elt for elt in thelist[1:] if elt <= pivot]
    larger = [elt for elt in thelist if elt > pivot]
    return quicksort(smaller) + [pivot] + quicksort(larger)
```


GCD (greatest common divisor)

$\operatorname{gcd}(\mathrm{a}, \mathrm{b})=$ largest integer that divides both a and b

- $\operatorname{gcd}(4,8)=4$
- $\operatorname{gcd}(15,25)=5$
- $\operatorname{gcd}(16,35)=1$

How can we compute GCD?

Euclid's method for computing GCD (circa 300 BC, still commonly used!)

$$
\operatorname{gcd}(a, b)= \begin{cases}a & \text { if } b=0 \\ \operatorname{gcd}(b, a) & \text { if } a<b \\ \operatorname{gcd}(a-b, b) & \text { otherwise }\end{cases}
$$

Python code for Euclid's algorithm

```
def gcd(a, b):
    if b == 0:
    return a
    if a < b:
    return gcd(b, a)
    return gcd(a-b, b)
```


Exponentiation

Goal: Perform exponentiation, using only addition, subtraction, multiplication, and division. (Example: 3^{4}) def exp(base, exponent): """Exponent is a non-negative integer""" if exponent $==0$:
return 1
return base * exp (base, exponent - 1)
Example:
$\exp (3,4)$
3 * $\exp (3,3)$
3* (3 * $\exp (3,2))$
3* 3 * $(3$ * $\exp (3,1)))$
3 * (3 * (3 * (3 * $\exp (3,0))))$
$3^{*}\left(3^{*}\left(3^{*}(3 * 1)\right)\right)$

Faster exponentiation

Suppose the exponent is even.
Then, base ${ }^{\text {exponent }}=\left(\text { base }{ }^{*} \text { base }\right)^{\text {exponent } / 2}$
Examples: $3^{4}=9^{2} \quad 9^{2}=81^{1} \quad 5^{12}=25^{6} \quad 25^{6}=625^{3}$

New implementation:
def exp (base, exponent) :
"""Exponent is a non-negative integer"""
if exponent $==0$:
return 1
if exponent \% 2 == 0 :
return exp (base*base, exponent/2)
return base * exp (base, exponent - 1)

Comparing the two algorithms

Original algorithm: $\mathbf{1 2}$ multiplications	Fast algorithm: $\mathbf{5}$ mult
5^{12}	5^{12}
$5 * 55^{11}$	$(5 * 5)^{6}$
$5 * 5 * 5^{10}$	25^{6}
$5 * 5 * 5 * 5$	$(25 * 25)^{3}$
\ldots	625^{3}
$5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5^{0}$	
$5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 1$	$625^{* 6252}$
$5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5$	$625 * 625 * 625^{1}$
$5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 25$	$625 * 625 * 625^{*} 625^{0}$
$5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 125$	$625 * 625 * 625^{*} 1$
\ldots	$625 * 625 * 625$
244140625	$625 * 390625$
	244140625

Speed matters: In cryptography, exponentiation is done with 600-digit numbers.

Recursion: base and inductive cases

- Recursion expresses the essence of divide and conquer
- Solve a smaller subproblem, use the answer to solve the original problem
- A recursive algorithm always has:
- a base case (no recursive call)
- an inductive or recursive case (has a recursive call)
- What happens if you leave out the base case?
- What happens if you leave out the inductive case?

Recursion vs. iteration

- Any recursive algorithm can be re-implemented as a loop instead
- This is an "iterative" expression of the algorithm
- Any loop can be implemented as recursion instead
- Sometimes recursion is clearer and simpler
- Mostly for data structures with a recursive structure
- Sometimes iteration is clearer and simpler

More examples of recursion

- List algorithms: recursively process all but the first element of the list, or half of the list
- Map algorithms: search for an item in part of a map (or any other spatial representation)
- Numeric algorithms: Process a smaller value

