Casting

"Generic" code

= C programs allow unrestricted casting from
one type to another
= Some casts are conversions
» E.g., between different numeric types
= Some casts restrict or reveal information

» E.g. between pointers to structs with more or fewer
fields

» void* is the implicit "supertype" of all pointers, akin to
Object in Java
= Some casts just reinterpret the bits
» E.g. between an int and a pointer

CSE 490c -- Craig Chambers 221

= One use for casting to write one piece of
code that's generic across many possible
client types
= E.g., a List of things, where we don't want to
restrict what kind of things we can store
= In Java: use Object as "universal" type, cast
arguments to Object (implicitly) when put in and
cast back to real type (explicitly) when take out
= Except that primitive types aren't Objects ®
= In C: long, or void*, or unions, or ...
» In C++: templates

CSE 490c -- Craig Chambers 222

Example

A taste of templates

struct Link {
void* data;
Link* next;
)
Link* addFirst(Link* list, void* data) { ... }

Link* myList = NULL;
myList = addFirst(myList, "a string");
char* firstElem = (char*) myList->data; //cast

CSE 490c -- Craig Chambers 223

template <class T> struct Link {
T data;
Link<T>* next;
Y
template <class T>
Link<T>* addFirst(Link<T>* list, T data) {...}

Link<const char*>* myList = NULL;
myList = addFirst(myList, "a string");
const char* firstElem = myList->data; //no cast

CSE 490c -- Craig Chambers 224

Multiple source files

Header files

= Bigger programs need to be broken up into
multiple files
= How does one file get access to things defined in
other files?
= In Java:
= User just writes .java source files

= Compiler automatically looks in other .class files to
see what they publicly export

« InC:

= User needs to write both .c source files
and .h header files

CSE 490c -- Craig Chambers 225

= Header files (redundantly) declare public
functions and types that will be accessed by
other .c files
. f,L_\Inything not declared is implicitly private to the .c
e
= Each .c file #include's the .h files of the
things it accesses
» That way it sees the declarations of those things
= Anything not declared in .h files can't be
accessed by other .c files (unless they cheat)

CSE 490c -- Craig Chambers 226




Example

= In link.h:
struct Link; // hide its body; allow Link* only
Link* addFirst(Link* list, void* data);
/] no {...} body! a prototype
... /] other functions here
= Inlink.c:
#include "link.h" // to verify consistency
... [] full definitions of struct Link, addFirst, etc.
= In client.c:
#include "link.h" // gain access to public decls
... [] uses of Link*, calls of addFirst, etc.

CSE 490c -- Craig Chambers 227

Input/output library functions

= printf has many ways of producing
formatted output

= cout is C++ alternative that many prefer
= scanf is way to get input from stdin

= Cin is C++ alternative

= note: pass pointers as arguments

= look up fopen, fread, fwrite, fclose to
do file I/O

CSE 490c -- Craig Chambers

228

More useful features

= "const" can be put before a type to make that
thing read-only
= E.g. "const char*" is a pointer to a character (or
character array) that can be read but not modified
= Enums are a nice way to declare a bunch of
named integer constants and a integral type
» E.g.: enum FlagColor { RED, WHITE, BLUE };
= Coming in Java 1.5?
= Refs (&) are an alternative to pointers (*)
that are never null and that automatically
dereference

= Good for call-by-reference arguments
CSE 490c -- Craig Chambers 229




