
CSE 303, Winter 2006, Assignment 5B
Due: Wednesday 22 February, 9:00AM

Last update: 12 February

You will implement a data structure for “counting words” and unit-tests for it while other group members
independently implement some I/O code and some “counter distance” code. The sample solution is 65-70
lines, not including testing code, the header file, or the definition of struct WordCounter.

Requirements:

• Put your code in two files, 5b.c and 5b test.c. Both should include 5b.h, which you should write.
5b.h needs just these prototypes plus typical header-file stuff:

struct WordCounter;
typedef struct WordCounter * word_counter_t;

word_counter_t new_counter();
void add_word(word_counter_t counter, char* word, int wordlen);
int get_count(word_counter_t counter, char* word, int wordlen);
int longest_word(word_counter_t counter);
int longer_exist(word_counter_t counter, char * word, int wordlen);
void free_counter(word_counter_t counter);

• In 5b.c, use the definition: struct WordCounter { int count; struct WordCounter * longer; };
and implement the 6 functions declared in the header file.

• Every word_counter_t you create will actually point to an array of 26 struct WordCounter objects
(one for each lower-case English letter). So new_counter should return a pointer to such an array,
with each count initialized to 0 and each longer field initialized to NULL.

• You may assume that the numeric values for ’a’, ’b’, etc. are consecutive and increasing. So if ch is
a lower-case English character, you may assume ch-’a’ is between 0 and 25, inclusive.

• For add_word, get_count, and longer_exist, assume word points to wordlen characters each of which
is a lower-case English letter. Do not assume a trailing ’\0’. You may assume wordlen>=1.

• So a word_counter_t can take any word (holding only lower-case English letters) and return a number
(its “count”). For example, the count for “cat” in counter would be

(((((counter[’c’-’a’]).longer)[’a’-’a’]).longer)[’t’-’a’]).count

but if a longer field along the “path” is NULL, it must not be dereferenced (of course), and the count
is 0.

• add_word increments the count for the word it is passed. This may require calls to new_counter since
any NULL longer field encounterd along the word’s “path” will need to be updated.

• get_count returns the current count for the word it is passed, as described above.

• free_counter deallocates all the space used by a counter including all the space used by the counters
it points to (and the counters they point to and so on).

• longest_word returns the length of the longest word that has a non-zero count in the counter.

• longer_exist returns 1 if there is a word with non-zero count that begins with the word longer_exist
is passed but is strictly longer. (For example, if passed foo, if foolish is in the counter, the result is
1.) Else it returns 0.

• In 5b test.c put unit tests for your code and a main that runs them.

1



Advice:

• Understand the data structure before you start coding.

• Keep longer fields NULL unless you cannot because a longer word has been added.

• Do and test new_counter, add_word, and get_count before proceeding. You will need loops that
maintain the “current position” in the word and the “current counter in the data structure”. In the
sample solution, these loops return directly on their last iteration (when the position is wordlen-1) if
not before, so they may look like infinite loops.

• For longest_word, use recursion: The longest word in a counter is:

– 1 more than the longest word in any counter it points to, unless it does not point to any counters.

– 1 if it points to no counters but has a count that is greater than 0.

– 0 if it points to no counters and has all counts that are 0. (This should only happen for the
“topmost” counter before any words are added.)

• longer_exist is very much like get_count except it returns 1 if at the end of the path is a non-NULL
longer.

Assessment and turn-in:
Your solutions should be:

• Correct C code that compiles without warnings using gcc -Wall and does not have space leaks

• In good style, including indentation and line breaks

• Of reasonable size

Your test code should provide good coverage.

Use turnin for course cse303 and project hw5. If you use late-days, use project hw5late1 (for 1 late day) or
hw5late2 (for 2) instead of hw4.

2


