
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 15— Debuggers, e.g., gdb

Dan Grossman CSE303 Winter 2006, Lecture 15 1



'

&

$

%

Where are We

“Tools you may not know exist” – debuggers, profilers, library-makers,

recompilation managers, version-control systems.

The concepts behind these tools are orthogonal to programming

language and level of abstraction.

But tools may need to “understand” your PL of choice.

And we’ll largely use C to give you more practice.

Today: debuggers (a terribly misnamed tool).

Dan Grossman CSE303 Winter 2006, Lecture 15 2



'

&

$

%

An execution monitor?

What would like to “see from” and “do to” a running program?

Why might all that be helpful?

What are reasonable ways to debug a program?

A “debugger” is a tool that lets you stop running programs, inspect

(sometimes set) values, etc.

Dan Grossman CSE303 Winter 2006, Lecture 15 3



'

&

$

%

Issues

• Source information for compiled code. (Get compiler help.)

• Stopping your program too late to find the problem. (Art.)

• Trying to “debug” the wrong algorithm.

• Trying to “run the debugger” instead of understanding the

program.

It’s an important tool. I use it sometimes.

Debugging C vs. Java

• Eliminating crashes does not make your C program correct.

• Debugging Java is “easier” because crashes and memory errors do

not exist.

• But programming Java is “easier” for the same reason!

Dan Grossman CSE303 Winter 2006, Lecture 15 4



'

&

$

%

gdb

gdb (Gnu debugger) is on attu and supports several languages,

including C compiled by gcc.

Modern IDEs have fancy GUI interfaces, which help, but concepts are

the same.

Compiling with debugging information: gcc -g

• Otherwise, gdb can tell you little more than the stack of function

calls.

Running gdb: gdb executable

• Source files should be in same directory (or use the -d flag).

At prompt: run args

Note: You can also inspect core files, which is why they get saved. (I

never do.)

Dan Grossman CSE303 Winter 2006, Lecture 15 5



'

&

$

%

Basic functionality

• backtrace

• frame, up, down

• print expression, info args, info locals

Often enough for “crash debugging”

Also often enough for learning how “the compiler does things” (e.g.,

stack direction, malloc policy, ...)

Dan Grossman CSE303 Winter 2006, Lecture 15 6



'

&

$

%

Breakpoints

• break function (or line-number or ...)

• conditional breakpoints

1. to skip a bunch of iterations

2. to do assertion checking

• going forward: continue, next, step, finish

– Some debuggers let you “go backwards” (typically an illusion)

Often enough for “binary search debugging”

Also useful for learning program structure (e.g., when is some function

called)

Dan Grossman CSE303 Winter 2006, Lecture 15 7



'

&

$

%

Advice

Understand what the tool provides you.

Use it to accomplish a task, for example “I want to know the

call-stack when I get the NULL-pointer dereference”

Optimize your time developing software.

Use development environments that have debuggers?

See also: jdb for Java (on attu)

Dan Grossman CSE303 Winter 2006, Lecture 15 8


