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CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 15— Debuggers, e.g., gdb
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Where are We

“Tools you may not know exist” – debuggers, profilers, library-makers,

recompilation managers, version-control systems.

The concepts behind these tools are orthogonal to programming

language and level of abstraction.

But tools may need to “understand” your PL of choice.

And we’ll largely use C to give you more practice.

Today: debuggers (a terribly misnamed tool).
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An execution monitor?

What would like to “see from” and “do to” a running program?

Why might all that be helpful?

What are reasonable ways to debug a program?

A “debugger” is a tool that lets you stop running programs, inspect

(sometimes set) values, etc.
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Issues

• Source information for compiled code. (Get compiler help.)

• Stopping your program too late to find the problem. (Art.)

• Trying to “debug” the wrong algorithm.

• Trying to “run the debugger” instead of understanding the

program.

It’s an important tool. I use it sometimes.

Debugging C vs. Java

• Eliminating crashes does not make your C program correct.

• Debugging Java is “easier” because crashes and memory errors do

not exist.

• But programming Java is “easier” for the same reason!
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gdb

gdb (Gnu debugger) is on attu and supports several languages,

including C compiled by gcc.

Modern IDEs have fancy GUI interfaces, which help, but concepts are

the same.

Compiling with debugging information: gcc -g

• Otherwise, gdb can tell you little more than the stack of function

calls.

Running gdb: gdb executable

• Source files should be in same directory (or use the -d flag).

At prompt: run args

Note: You can also inspect core files, which is why they get saved. (I

never do.)
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Basic functionality

• backtrace

• frame, up, down

• print expression, info args, info locals

Often enough for “crash debugging”

Also often enough for learning how “the compiler does things” (e.g.,

stack direction, malloc policy, ...)
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Breakpoints

• break function (or line-number or ...)

• conditional breakpoints

1. to skip a bunch of iterations

2. to do assertion checking

• going forward: continue, next, step, finish

– Some debuggers let you “go backwards” (typically an illusion)

Often enough for “binary search debugging”

Also useful for learning program structure (e.g., when is some function

called)
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Advice

Understand what the tool provides you.

Use it to accomplish a task, for example “I want to know the

call-stack when I get the NULL-pointer dereference”

Optimize your time developing software.

Use development environments that have debuggers?

See also: jdb for Java (on attu)
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