
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 2— Processes, Users, Shell Special Characters, Emacs

Dan Grossman CSE303 Winter 2006, Lecture 2 1

'

&

$

%

Where are we

It’s like we started over using the computer from scratch.

And all we can do is run dinky programs at the command-line.

But we are learning a model (the system is files, processes, and users)

and a powerful way to control it (the shell).

If we get the model right, hopefully we can learn lots of details quickly.

Today:

• Finish up lecture 1 (odds-and-ends plus shell-as-interpreter)

• The rest of the model briefly: Processes and Users

• More programs (ps, chmod, kill, ...)

• Special shell characters (*, ~, ...)

• Text editing (particularly emacs)

Dan Grossman CSE303 Winter 2006, Lecture 2 2

'

&

$

%

More Lecture-1 Odds and Ends

• cat, more, less, man

• Key less/man commands: spacebar, b, /search-exp, q

• exit

• For file and directory operations (rm, cp, mv, ...), use man or

Pocket Guide pages 37–55 (or maybe 37–70)

Note: Homework 1 is posted, due January 16. You can do all but the

last problem after today and should do at least the first three as soon

as possible.

Note: Bash reference manual in html linked from course webpage.

Dan Grossman CSE303 Winter 2006, Lecture 2 3

'

&

$

%

Lecture 1: How to think about the shell
The shell is an interpreter for a strange programming language (of the

same name). So far:

• “Shell programs” are program names and arguments

• The interpreter runs the program (passing it the arguments),

prints any output, and prints another prompt. The program can

affect the file-system, send mail, open windows, etc.

• “Builtins” such as exit and cd give directions to the interpreter.

It’s actually much more complicated:

• (two kinds of) variables.

• some programming constructs (conditionals, loops, etc.)

• The shell interprets lots of funny characters differently, rather than

pass them as options to programs.

Dan Grossman CSE303 Winter 2006, Lecture 2 4

'

&

$

%

Users

• There is one file-system, one operating system, (often) one CPU,

and multiple users.

• whoami

• ls -l and chmod (permissions), quota (limits)

– Make your homework unreadable by others!

• /etc/passwd guides the login program:

– Correct username and password

– Home directory

– Which shell to open (pass it the home directory)

– The shell then takes over, with startup scripts (e.g.,

.bash login). (ls -a)

• one “superuser” a.k.a. root. (Change passwords, halt machine, ...)

Dan Grossman CSE303 Winter 2006, Lecture 2 5

'

&

$

%

Processes

• A running program is called a process. An application (e.g.,

emacs), may be running as 0, 1, or 57 processes at any time.

• The shell runs a program by “launching a process” waiting for it

to finish, and giving you your prompt back.

– What you want for ls, but not for emacs.

– &, jobs, fg, bg, kill

– ps, top

• A running shell is just a process that kills itself when interpreting

the exit command.

• (Apologies for aggressive vocabulary, but we’re stuck with it for

now.)

Dan Grossman CSE303 Winter 2006, Lecture 2 6

'

&

$

%

That’s most of a running system

• File-system, users, processes

• The operating system manages these

• Processes can do I/O, change files, launch other processes.

• Other things: Input/Output devices (monitor, keyboard, network)

• GUIs don’t change any of this, but they do hide it a bit.

Now: Back to the shell...

Dan Grossman CSE303 Winter 2006, Lecture 2 7

'

&

$

%

Complicating the shell

So far, our view of the shell is the barest minimum:

• builtins affect subsequent interpretations. New: source

• Otherwise, the first “word” is a program run with the other

“words” passed as arguments.

– Programs interpret arguments arbitrarily, but conventions exist.

But you want (and bash has) so much more:

• Filename metacharacters

• Pipes and Redirections (redirecting I/O from and to files)

• Command-line editing and history access

• Shell and environment variables

• Programming Constructs (ifs, loops, arrays, expressions, ...)

All together, a very powerful feature set, but awfully unelegant.

Dan Grossman CSE303 Winter 2006, Lecture 2 8

'

&

$

%

Filename metacharacters

Much happens to a command-line to turn it into a “call program with

arguments” (or “invoke builtin”).

Certain characters can expand into (potentially) multiple filenames:

• ~foo – home directory of user foo

• ~ – current user’s home directory (same as ~$user or

‘whoami‘).

• * (by itself) – all files in current directory

• * – match 0 or more filename characters

• ? – match 1 filename character

• [abc], [a-E], [^a], ... more matching

Remember, this happens before deciding what to pass to a program.

Dan Grossman CSE303 Winter 2006, Lecture 2 9

'

&

$

%

Filename metacharacters: why

• Manually, you use them all the time to save typing.

• In scripts, you use them for flexibility. Example: You do not know

what files will be in a directory, but you can still do: cat *

(though a better script would skip directories).

But what if it’s not what you want? Use quoting ("*") or escaping

(*).

The rules on what needs escaping where are very arcane.

Dan Grossman CSE303 Winter 2006, Lecture 2 10

'

&

$

%

Where are we

Features of the bash “language”:

1. builtins

2. program execution

3. filename expansion (Pocket Guide 22–23)

4. command-line editing and history

5. shell and environment variables

6. programming constructs

But file editing is too useful to put off... so a detour to emacs (which

shares some editing commands with bash)

Dan Grossman CSE303 Winter 2006, Lecture 2 11

'

&

$

%

What is emacs?
A programmable, extensible text editor, with lots of goodies for

programmers.

Not a full-blown IDE.

Much “heavier weight” than vi.

Top-6 commands:

• C-g

• C-x C-f

• C-x C-s, C-x C-w

• C-x C-c

• C-x b

• C-k, C-w, C-y, ...

Customizable with elisp (starting with your .emacs).

Dan Grossman CSE303 Winter 2006, Lecture 2 12

'

&

$

%

Putting it all together: Java

Java is a programming language; you can write and run programs in

various environments.

The javac and java programs “compile” and “run” Java programs

and emacs has a decent Java mode.

So we can write Java files in emacs, and use the shell to run the

program and pass arguments.

(The Java program takes the class whose main should be run as its

first argument and gives it the remaining arguments.)

Dan Grossman CSE303 Winter 2006, Lecture 2 13

'

&

$

%

History

• The history builtin

• The ! special character

– !!, !n, !abc, ...

– Can add, substitute, etc.

This is really for fast manual use; not so useful in scripts.

Dan Grossman CSE303 Winter 2006, Lecture 2 14

'

&

$

%

Command-line editing

Note: getting backspace to work in Reflection-X

Lots of control-characters for moving around and editing the

command-line. (Pocket Guide page 28, emacs-help, and Bash

reference manual Section 8.4.)

They make no sense in scripts.

Gotcha: C-s is a strange one (stops displaying output until C-q, but

input does get executed).

Good news: many of the control characters have the same meaning in

emacs (and bash has a vi “mode” too).

Dan Grossman CSE303 Winter 2006, Lecture 2 15

'

&

$

%

Summary

As promised, we are flying through this stuff!

• Your computing environment has files, processes, users, a shell,

and programs (including emacs).

• Lots of small programs for files, permissions, manuals, etc.

• The shell has strange rules for interpreting command-lines. So far:

– Filename expansion

– History expansion

• The shell has lots of ways to customize/automate. So far:

– alias and source

– run .bash login or .bashrc when shell starts.

∗ (or .bash profile – look up the differences)

Next: I/O Redirection, Shell Programming

Dan Grossman CSE303 Winter 2006, Lecture 2 16

