
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Autumn 2007

Lecture 12— C: The C Preprocessor; printf/scanf

CSE303 Autumn 2007, Lecture 12 1

'

&

$

%

Where are We

Two important “sublanguages” used a lot in C (almost every program)

• The preprocessor: runs even before the compiler (hence the name)

• printf/scanf: interpret certain strings funny at run-time

– Really just a library though

Two lectures in one (preprocessor a bigger topic).

CSE303 Autumn 2007, Lecture 12 2

'

&

$

%

The compilation picture

gcc does all this for you

• -E to only preprocess, put result on stdout (rare)

• -c to stop with .o (common; for part of a program)

CSE303 Autumn 2007, Lecture 12 3

'

&

$

%

More about multiple files

Typical usage:

• Preprocessor #include to get a file describing prototypes (just

types of functions/variables, not code)

• Linker is passed your .o and other code

– By default, the “standard C library”

– Other .o and .a files (hence -lm in homework 3)

Whole lecture on the linker and libraries later.

CSE303 Autumn 2007, Lecture 12 4

'

&

$

%

The Preprocessr

Rewrites your .c file before the compiler gets at the code.

• Lines starting with # tell it what to do.

Can do crazy things (please don’t); uncrazy things are:

1. Including contents of header files (see previous slide)

2. Defining constants and parameterized macros

(textual-replacements)

• Actually token-based (to be explained)

• Easy to misdefine and misuse

3. Conditional compilation

• Include/exclude part of a file

• Example uses: code for debugging, code for some computers,

“the trick” for including header files only once

CSE303 Autumn 2007, Lecture 12 5

'

&

$

%

File inclusion
#include <foo.h>

• Search for file foo.h in “system include directories” (on attu

/usr/include and subdirs) for foo.h and include its

preprocessed contents (recursion!) at this place.

– Typically lots of nested includes, so result is a mess nobody

looks at.

– Idea is simple: declaration for fgets is in stdio.h (use man for

what file to include)

• #include "foo.h" the same but first look in current directory.

– How you break your program into smaller files and still make

calls to other files.

• gcc -I dir1 -I dir2 ... look in these directories for all

header files first (keeps paths out of your code files).

CSE303 Autumn 2007, Lecture 12 6

'

&

$

%

Conventions
Conventions to always follow:

1. Give included files names ending in .h; only include these header

files.

2. Do not put functions in a header file; only struct definitions,

prototypes, and other includes

3. Do all your #include at the beginning of a file.

4. For header file foo.h start it with:

#ifndef FOO_H

#define FOO_H

and end it with:

#endif

(We will learn why soon.)

CSE303 Autumn 2007, Lecture 12 7

'

&

$

%

Simple macros

#define M_PI 3.14 // capitals a convention to avoid problems

#define DEBUG_LEVEL 1

#define NULL 0 // already in standard library

Replace all matching tokens in the rest of the file

• Knows where “words” start and end (unlike sed)

• Has no notion of scope (unlike C compiler)

• (Rare: can shadow with another #define or use #undef)

#define foo 17

void f() {

int food = foo; // becomes int food = 17 (ok)

int foo = 9+foo+foo; // becomes int 17 = 9+17+17 (nonsense)

}

CSE303 Autumn 2007, Lecture 12 8

'

&

$

%

Macros with parameters

#define TWICE_AWFUL(x) x*2

#define TWICE_BAD(x) ((x)+(x))

#define TWICE_OK(x) ((x)*2)

double twice(double x) { return x+x; } // my preference

Replace all matching “calls” with “body” but with text of arguments

where the formals are.

Gotchas (understand why!):

• y=3; z=4; w=TWICE_AWFUL(y+z);

• y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

Common misperception: Macros a good idea to avoid performance

overhead of a function call.

Macros can be more flexible though (TWICE_OK works on ints and

doubles without conversions (which could round))

CSE303 Autumn 2007, Lecture 12 9

'

&

$

%

Justifiable uses

Parameterized macros are generally to be avoided (use functions), but

there are things functions cannot do:

#define NEW_T(t,cnt) ((t*)malloc((cnt)*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n",__FILE__,__LINE__,x)

CSE303 Autumn 2007, Lecture 12 10

'

&

$

%

Conditional compilation

#ifdef FOO (matching #endif later in file)

#ifndef FOO (matching #endif later in file)

#if FOO > 2 (matching #endif later in file)

(You can alse have a #else inbetween somewhere.)

Simple use: #ifdef DEBUG // do following only when debugging

printf(...);

#endif

Fancier: #ifdef DEBUG // use DBG_PRINT for debugging-prints

#define DBG_PRINT(x) printf("%s",x)

#else

#define DBG_PRINT(x) // replace with nothing

#endif

Note: gcc -D FOO makes FOO “defined”

CSE303 Autumn 2007, Lecture 12 11

'

&

$

%

Back to header files

Now we know what this means:

#ifndef SOME_HEADER_H

#define SOME_HEADER_H

... rest of some_header.h ...

#endif

Assuming nobody else defines SOME_HEADER_H (convention), the first

#include "some_header.h" will do the define and include the rest

of the file, but the second will skip everything.

• More efficient than copying the prototypes over and over again.

• In presence of circular includes, necessary to avoid “creating” an

infinitely large result of preprocessing.

So we always do this.

CSE303 Autumn 2007, Lecture 12 12

'

&

$

%

C preprocessor summary

A few easy to abuse features and a bunch of conventions (for

overcoming C’s limitations).

• #include (cycles fine with “the trick”, the way you say what

other definitions you need)

• #define (avoids magic constants, parameterized macros have a

few justifiable uses, token-based text replacement)

• #if... (for showing the compiler less code)

CSE303 Autumn 2007, Lecture 12 13

'

&

$

%

printf and scanf

“Just” two library functions in the standard library

• Prototypes in stdio.h

Example: printf("%s: %d %g ", x, y+9, 3.0)

They can take any number of arguments.

• You can define functions like that too, but it is rarely useful,

arguments are not checked for any types, and writing the function

definition is a pain.

– Not covered in 303.

The f is for “format” – crazy characters in the format string control

formatting.

CSE303 Autumn 2007, Lecture 12 14

'

&

$

%

The rules

To avoid HYCSBWK:

• Number of arguments better match number of %

• Corresponding arguments better have the right types (%d,int

%f,float, %e,float (prints scientific), %s,\0-terminated char*, ...

(look them up))

For scanf, arguments should be pointers to the right type of thing

(reads input and assigns to the variables).

• So int* for %d, but still char* for %s (not char**)

CSE303 Autumn 2007, Lecture 12 15

'

&

$

%

More funny characters

Between the % and the letter (e.g., d) can be other things that control

formatting (look them up; we all do).

• Padding (width) %12d %012d

• Precision ...

• Left/right justification ...

Know what is possible; know that other people’s code may look funny.

CSE303 Autumn 2007, Lecture 12 16

'

&

$

%

More on scanf

• Check for errors (returns number of % sucessfully matched)

– maybe the input does not match the text

– maybe some “number” in the input does not parse as a number

• Always bound your strings

– Or some external data could lead to arbitrary behavior

(common source of viruses; input a long string containing evil

code)

– Remember there must be room for the \0

– %s reads up to the next whitespace

Example: scanf("%d:%d:%d",&hour,&minutes,&seconds);

Example: scanf("%20s",buf) (buf better have room for 20

characters)

CSE303 Autumn 2007, Lecture 12 17

'

&

$

%

Useful, bizarre sublangage

This is yet another funky little collection of characters with strange

meaning.

• Pretty useful for reading/writing files (and the screen)

– See fprintf, fscanf

• Also useful for reading/writing regular old strings

– See snprintf, sscanf

– (Do not use sprintf unless you enjoy danger.)

CSE303 Autumn 2007, Lecture 12 18

