
Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Introducing Shared-Memory Concurrency
Race Conditions and Atomic Blocks

Laura Effinger-Dean

November 19, 2007

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Why use concurrency?
Communicating between threads
Concurrency in Java/C

Concurrency

Computation where “multiple things happen at the same time” is
inherently more complicated than sequential computation.

I Entirely new kinds of bugs and obligations

Two forms of concurrency:

I Time-slicing: only one computation at a time but pre-empt to
provide responsiveness or mask I/O latency.

I True parallelism: more than one CPU (e.g., the lab machines
have two, the attu machines have 4, ...)

Within a program, each computaton becomes a separate thread.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Why use concurrency?
Communicating between threads
Concurrency in Java/C

Why do this?

I Convenient structure of code
I Example: web browser. Each “tab” becomes a separate thread.
I Example: Fairness – one slow computation only takes some of

the CPU time without your own complicated timer code.
Avoids starvation.

I Performance
I Run other threads while one is reading/writing to disk (or

other slow thing that can happen in parallel)
I Use more than one CPU at the same time

I The way computers will get faster over the next 10 years
I So no parallelism means no faster.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Why use concurrency?
Communicating between threads
Concurrency in Java/C

Working in Parallel

Often you have a bunch of threads running at once and they might
need the same mutable memory at the same time but probably not.
Want to be correct without sacrificing parallelism.
Example: A bunch of threads processing bank transactions:

I withdraw, deposit, transfer, currentBalance, ...

I chance of two threads accessing the same account at the
same time very low, but not zero.

I want mutual exclusion (a way to keep each other out of the
way when there is contention)

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Why use concurrency?
Communicating between threads
Concurrency in Java/C

Basics

C: The POSIX Threads (pthreads) library

I #include <pthread.h>

I pthread create takes a function pointer and an argument
for it; runs it as a separate thread.

I Many types, functions, and macros for threads, locks, etc.

Java: Built into the language

I Subclass java.lang.Thread overriding run

I Create a Thread object and call its start method

I Any object can “be synchronized on” (later)

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

What are race conditions?
Example of race conditions

Common bug: race conditions

There are several new types of bugs that occur in concurrent
programs; race conditions are the most fundamental and the most
common.

I A race condition is when the order of thread execution in a
program affects the program’s output.

I Difficult to identify and fix, because problematic thread
interleavings may be unlikely.

I Data races (common type of race condition) - when multiple
threads access the same location in memory “simultaneously,”
with at least one access being a write

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

What are race conditions?
Example of race conditions

Example: TwoThreads.java

I What is the intended output of this program?

I What actual outputs are possible?

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

What are race conditions?
Example of race conditions

What could go wrong?

Simultaneous updates lead to race conditions. Suppose two
threads both execute i++. In machine code, this single statement
becomes several operations:

Thread 1 Thread 2
r1 = i r2 = i
r1 += 1 r2 += 1
i = r1 i = r2

If i starts at 0, what is the value of i after execution?

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

What are race conditions?
Example of race conditions

What could go wrong?

Simultaneous updates lead to race conditions.

Thread 1 Thread 2
r1 = i
r1 += 1
i = r1

r2 = i
r2 += 1
i = r2

Final value of i is 2.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

What are race conditions?
Example of race conditions

What could go wrong?

Simultaneous updates lead to race conditions.

Thread 1 Thread 2
r1 = i
r1 += 1

r2 = i
r2 += 1

i = r1
i = r2

Final value of i is 1. The first update to i is lost.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

What are race conditions?
Example of race conditions

Detecting race conditions

I Without calls to Thread.sleep(), our code ran “so fast”
that the race condition did not manifest.

I Forcing a thread to yield control is a good way to encourage
“interesting” interleavings.

I BUT:
I Calling sleep doesn’t guarantee that the race condition will

affect the output.
I In general, programs are large and we don’t know where to

look for bugs or if bugs even exist.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Avoiding race conditions

I We will try to restrict the number of possible thread
interleavings.

I E.g., in TwoThreads, we got into trouble because the updates
were interleaved.

I Simple limitation is to define atomic blocks in which a thread
may assume that no other threads will execute.

I Lots of variations on terminology: critical sections,
synchronization, etc.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Fixing TwoThreads.java

(Demo.)

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Fixing TwoThreads.java

Now the following troublesome interleaving is illegal!

Thread 1 Thread 2
r1 = i
r1 += 1

r2 = i
r2 += 1

i = r1
i = r2

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Fixing TwoThreads.java

Instead, we get:

Thread 1 Thread 2
atomic {

r1 = i
r1 += 1
i = r1

}
atomic {

r2 = i
r2 += 1
i = r2

}

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Atomic blocks

I Atomic blocks are a common way of fixing race conditions

I Allows us to think “single-threaded” even in a multi-threaded
program

I How much code should be inside the block?
I Atomic blocks that are “too long” could cause the program to

slow down, as threads sleep waiting for other threads to finish
executing atomically.

I Atomic blocks that are “too short” might miss race conditions.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Familiar example: bank accounts

(Demo)

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Producer and consumer threads

I One (or more) thread(s) produces values and leaves them in a
buffer to be processed

I One (or more) thread(s) takes values from the buffer and
consumes them

I Common application in operating systems, etc.

(Demo.)

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Using atomic blocks to avoid race conditions
Example: BankAccount.java
Example: ProducerConsumer.java

Limitations of atomic blocks

In the producer-consumer example, we see:

I Busy wait: threads loop forever waiting for a state change.

I Scheduling fairness: no guarantee that the threads will get
equal shares of processor time.

There are ways to fix both of these problems with atomic blocks,
but we don’t have good implementations for Java or C. Instead,
we’ll look briefly at what mechanisms Java and pthreads do
provide (more on Wednesday).

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Locks

Atomic blocks don’t exist yet

I You can’t (yet) use atomic blocks in true Java code (although
we “faked it”).

I Active area of research—maybe it will be integrated into Java
at some point.

I Instead programmers use locks (mutexes) or other
mechanisms, usually to get the behavior of atomic blocks.

I But misuse of locks will violate the “all-at-once” policy.
I Or lead to other bugs we haven’t seen yet.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Locks

Lock basics

A lock is acquired and released by a thread.

I At most one thread holds it at any moment.
I Acquiring it “blocks” until the holder releases it and the

blocked thread acquires it.
I Many threads might be waiting; one will “win.”
I The lock-implementor avoids race conditions on lock-acquire.

I So create an atomic block by surrounding with lock acquire
and release.

I Problems:
I Easy to mess up (e.g., use two different locks to protect the

same location in memory).
I Deadlock: threads might get stuck forever waiting for locks

that will never be released.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Summary

I Concurrency introduces bugs that simply don’t exist in
sequential programming.

I Atomic blocks are a useful way of thinking about safety in
concurrent programs.

I In real code, you’ll use locks or other mechanisms, which
eliminate race conditions if used properly but can lead to more
bugs if misused.

Laura Effinger-Dean Introducing Shared-Memory Concurrency



Concurrency
Race conditions
Atomic blocks

Real-life mechanisms

Blatant plug(in)

I For the examples we used AtomEclipse, a plugin that I
developed for Eclipse (an IDE for Java (and other languages)).

I AtomEclipse is designed for students like you to learn about
atomic blocks more easily.

I Download and try out if you want to play around with the
examples some more:
http://wasp.cs.washington.edu/atomeclipse (linked
from the 303 web page)

I Let me know what you think: effinger@cs or talk to me
after class!

Laura Effinger-Dean Introducing Shared-Memory Concurrency


	Concurrency
	Why use concurrency?
	Communicating between threads
	Concurrency in Java/C

	Race conditions
	What are race conditions?
	Example of race conditions

	Atomic blocks
	Using atomic blocks to avoid race conditions
	Example: BankAccount.java
	Example: ProducerConsumer.java

	Real-life mechanisms
	Locks

	

