
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Autumn 2007

Lecture 6— sed, command-line-tools wrapup

CSE303 Autumn 2007, Lecture 6 1

'

&

$

%

Where are we

• learned how to use the shell to run, combine, and write programs

• learned regular-expressions (plus more) and grep for finding

guided by regexps.

– To finish up: reusing previous parts of matched string

• Now: sed for find-and-replace guided by regexps

• Then: Short plug for awk (not tested or taught)

• Then: Introduction to C

CSE303 Autumn 2007, Lecture 6 2

'

&

$

%

Review

grep takes a pattern and a file (or stdin)

The pattern describes a regexp:

• Example: a[bc]*.?.?d*e

• Special characters: . ? ^ $ * () [] + { } \ | (Some

need escaping; see the man page)

grep prints any line that has one or more substrings that match.

• Or invert with -v

• Or count with -c

So the output is basically a subset of the input; what if we want to

change or add some output. Enter sed...

CSE303 Autumn 2007, Lecture 6 3

'

&

$

%

sed
A stream editor ; a little terrible language that processes one line at a

time. Multi-line manipulations possible but painful.

Simple most-common use (and -e optional here):

sed -e s/pattern/replacement/g file

“For each line of file, replace every (longest) substring that matches

pattern with replacement and then print it to standard out.”

Simple variations:

• omit file: read from stdin

• omit g: replace only first match

• sed -n and add p where g is: print only lines with ≥ 1 match

• multiple -e s/.../.../...: apply each left-to-right

• -f file2: read script from file; apply each line top-to-bottom

CSE303 Autumn 2007, Lecture 6 4

'

&

$

%

More sed

The replacement text can use \1 ... \9 – very common.

Hint: To avoid printing the whole line, match the whole line and then

have the replacement print only the part you want.

Newline note: The \n is not in the text matched against and is

(re)-added when printed.

Aside: “Line-ending madness” on 3 common operating systems.

CSE303 Autumn 2007, Lecture 6 5

'

&

$

%

Toward full sed

“sed lines” can have more:

• different commands (so far, s for substitution)

– A couple others: p, d, N

– Other useful ones use the hold space (next slide)

• different addresses (before the command)

– number for exactly that line number

– first~step (GNU only) (lines are first + n*step)

– $ last line

– /regexp/ lines containing a match of regexp

• a label such as :foo before address or command

[:label] [address] [command-letter][more-stuff-for-command]

CSE303 Autumn 2007, Lecture 6 6

'

&

$

%

The fancy stuff

Usually (but not always) when you get to this stuff, your script is

unreadable and easier to write in another language.

• The “hold” space. One other string that is held across lines. Also

the “pattern” space (where the “current line” starts).

– x, G, H

• Branches to labels (b and t)

– Enough to code up conditionals and loops like in assembly

language.

Your instructor never remembers the details, but knows roughly what

is possible.

CSE303 Autumn 2007, Lecture 6 7

'

&

$

%

sed summary

The simplest way to do simple find-and-replace using regexps.

Programs longer than a few lines are possible, but probably the wrong

tool.

But a line-oriented stream editor is a very common need, and learning

how to use one can help you use a better one.

In homework 2, a “one-liner” is plenty.

For the rest, see the manual.

CSE303 Autumn 2007, Lecture 6 8

'

&

$

%

awk

We will skip awk, another useful line-oriented editor.

Compared to sed:

• Much saner programming constructs (math, variables, for-loops,

...)

• Easier to print “fields” of lines, where fields are separated by a

chosen “delimiter”

• Easier to process multiple lines at a time (change the end-of-line

delimiter)

• Less regexp support; one-liners not as short

CSE303 Autumn 2007, Lecture 6 9

'

&

$

%

string-processing summary

Many modern scripting languages support grep, sed, and awk features

directly in the language, perhaps with better syntax.

• Better: combine features

• Worse: one big program that “hopefully has everything” instead

of useful small ones

When all you need to do is simple text manipulation, these tools let

you “hack something up” quicker than, say, Java.

But if you need “real” data structures, performance, libraries, etc., you

reach their practical limits quickly.

CSE303 Autumn 2007, Lecture 6 10

'

&

$

%

Welcome to C

Compared to Java, in rough order of importance

• Lower level (less for compiler to do)

• Unsafe (wrong programs might do anything)

• Not “object-oriented”

• “Standard library” is much smaller.

• Many similar control constructs (loops, ifs, ...)

• Many syntactic similarities (operators, types, ...)

A different world-view and much more to keep track of; Java-like

thinking can get you in trouble.

CSE303 Autumn 2007, Lecture 6 11

