
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Autumn 2007

Lecture 9— C: structs, the heap and manual memory management

CSE303 Autumn 2007, Lecture 9 1



'

&

$

%

Where are we

• structs (records with fields) and more on pointers

• heap-allocated objects; space leaks and more dangling pointers

• Friday: our first “societal implications” class (probably web

privacy, “personalization”, “appropriate use”, ...)

CSE303 Autumn 2007, Lecture 9 2



'

&

$

%

Structs

A struct is a record.

A pointer to a struct is like a Java object with no methods.

x.f is for field access. (if x not a pointer — something new!)

(*x).f in C is like x.f in Java. (if x is a pointer)

x->f is an abbreviation for (*x).f.

There is a huge difference between passing a struct and passing a

pointer to a struct.

Again, left-expressions evaluate to locations (which can be whole

struct locations or just a field’s location).

Again, right-expressions evaluate to values (which can be whole structs

or just a field’s contents).

CSE303 Autumn 2007, Lecture 9 3



'

&

$

%

Pointer syntax

Declare a variable to have a pointer type:

t * x; or t* x; or t *x; or t*x;

(where t is a type and x is a variable)

An expression to dereference a pointer:

*x (or more generally *e)

where e is an expression.

C’s designers used the same character on purpose, but declarations

(create space) and expressions (compute a value) are totally different

things.

(And there’s multiplication too.)

CSE303 Autumn 2007, Lecture 9 4



'

&

$

%

Heap-Allocation

So far, all of our ints, pointers, arrays, and structs have been

stack-allocated, which in C has two huge limitations:

• The space is reclaimed when the allocating function returns

• The space required must be a constant (only an issue for arrays)

Heap-allocation has neither limitation.

Comparison: new C(...) in Java:

• Allocate space for a C (exception if out-of-memory)

• Initialize the fields to null or 0

• Call the user-written constructor function

• Return a reference (hey, a pointer!) to the new object.

In C, these steps are almost all separated.

CSE303 Autumn 2007, Lecture 9 5



'

&

$

%

Malloc, part 1

malloc is “just” a library function: it takes a number, heap-allocates

that many bytes and returns a pointer to the newly-allocated memory.

• Returns NULL on failure.

• Does not initialize the memory.

• You must cast the result to the pointer type you want.

• You do not know how much space different values need!

Do not do things like (struct Foo*)(malloc(8))!

CSE303 Autumn 2007, Lecture 9 6



'

&

$

%

Malloc, part 2

malloc is “always” used in a specific way:

(t*)malloc(e * sizeof(t))

Returns a pointer to memory large enough to hold an array of length e

with elements of type t.

It is still not initialized (use a loop)!

Underused friend: calloc (takes e and sizeof(t) as separate

arguments, initializes everything to 0).

Note: x[i] and *(x+i) actually get you the sizeof(x) bytes at

address “x plus (i times sizeof(x))” – do not do *(x+i*sizeof(x))

(that’s too big an index).

CSE303 Autumn 2007, Lecture 9 7



'

&

$

%

Half the Battle
We can now allocate memory of any size and have it “live” forever.

For example, we can allocate an array and return it.

Unfortunately, computers do not have infinite memory so “living

forever” could be a problem.

Java solution: Conceptually objects live forever, but the system has a

garbage collector that finds unreachable objects and reclaims their

space.

C solution: You explicitly free an object’s space by passing a pointer

to it to the library function free.

Freeing heap memory correctly is very hard in complex software and is

the disadvantage of C-style heap-allocation.

• Later we will learn idioms that help. For now just learn the rules

of the game.

CSE303 Autumn 2007, Lecture 9 8



'

&

$

%

Everybody wants to be free(d once)

int * p = (int*)malloc(sizeof(int));

p = NULL; /* LEAK! */

int * q = (int*)malloc(sizeof(int));

free(q);

free(q); /* HYCSBWK */

int * r = (int*)malloc(sizeof(int));

free(r);

int * s = (int*)malloc(sizeof(int));

*s = 19;

*r = 17; /* HYCSBWK, but maybe *s==17 ?! */

Problems much worse with functions:

f returns a pointer; (when) should f’s caller free the pointed-to object?

g takes two pointers and frees one pointed-to object. Can the other

pointer be dereferenced?

CSE303 Autumn 2007, Lecture 9 9



'

&

$

%

The rules of malloc/free

For every run-time call to malloc there should be one run-time call to

free.

If you “lose all pointers” to an object, you can’t ever call free (a leak)!

If you “use an object after it’s freed” (or free it twice), you used a

dangling pointer!

Note: It’s possible but rare to use up too much memory without

creating “leaks via no more pointers to an object”.

Interesting side-note: The standard-library must “remember” how big

the object is (but it won’t tell you).

CSE303 Autumn 2007, Lecture 9 10


