4 N

CSE 303:
Concepts and Tools for Software Development

Dan Grossman
Spring 2007
Lecture 3— 1/O Redirection, Shell Scripts

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 1

/VVhere are We

~

e A simple view of the system: files, users, processes, shell
e Lots of small useful programs; more to come

e An ever-more-complicated shell definition:
— Filename expansion
— Command-line editing
— History expansion
— 1/0 redirection
— Programming constructs

— Variables

Dan Grossman CSE303 Spring 2007, Lecture 3

/Simple view of input/output \

e Old news: Programs take an array of strings as arguments

e Also: Programs return an integer (convention: 0 for “success”)
The shell also sets up 3 “streams” of data for the program to access:

e stdin a.k.a. 0: an input stream

e stdout a.k.a. 1: an output stream

e stderr a.k.a. 2: another output stream

The default shell behavior uses the keyboard for stdin and the shell
window for stdout and stderr.

Examples:
1s prints files stdout and “No match” to stderr.
mail takes message body from stdin (waiting for C-d (“end of file")

\3) stop taking input). /

Dan Grossman CSE303 Spring 2007, Lecture 3 3

/File Redirection

~

Using arcane characters, we can tell the shell to use files instead of the
keyboard /screen (Bash Manual, Section 3.6):

e redirect input: cmd < file
e redirect output, overwriting file: cmd > file
e redirect output, appending to file: cmd >> file
e redirect error output: cmd 2> file
e redirect output and error output to file: cmd &> file
o ...
Examples:
e How | put the histories on the web page.

e 1s uses stdout and stderr.

K.

Mailing a file's contents.

Dan Grossman CSE303 Spring 2007, Lecture 3

/Pipes \

cmdl | cmd?2

Change the stdout of cmdl and the stdin of cmd2 to be the same,
new stream!

Very powerful idea:
e In the shell, larger command out of smaller commands

e To the user, combine small programs to get more usefulness

— Each program can do one thing and do it well!
Examples:
e foo ——help | 1less
e djpeg me.jpg | pnmscale -xysize 100 150 | cjpeg >

\\ me_thumb. jpg /

Dan Grossman CSE303 Spring 2007, Lecture 3 5

/cat and redirection \

Just to show there is some math underlying all this nonsense, here are

some fun and useless equivalences (like 1 -y = y):
e cat y =cat < y
ex <y=caty | x

o xr | cat==x

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 6

/Combining Commands \

Combining simpler commands to form more complicated ones is very

programming-like. In addition to pipes, we have:
e cmdl ; cmd2 (sequence)
e cmdl || cmd2 (or, using int result — the “exit status”)
e cmd2 && cmd2 (and, like or)

e cmdl ‘cmd2* (use output of cmd2 as input to cmdl). (Very
useful for your homework)

— Useless example: cd ‘pwd‘.

— n-u xample: mkdir °‘whoami whoami ‘.
Non-useless example: mkd ‘wh ‘A‘wh ¢

Note: Previous line's exit status is in $7.

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 7

/I\Ion—alphabet soup \

List of characters with special (before program /built-in runs) meaning
isgrowing: ¢ ! % & *x ~ 7 [1 ">\ >< | $(and we're not

done).

If you ever want these characters or (space) in something like an
argument, you need some form of escaping; each of " ’ \ have
slightly different meaning.

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 8

ﬂl'oward Scripts... \

A running shell has a state, i.e., a current

e working directory

® user

e collection of aliases
e history

In fact, next time we will learn how to extend this state with new shell
variables.

We learned that source can execute a file's contents, which can affect
the shell’s state.

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 9

/Running a script \

What if we want to run a bunch of commands without changing our

shell’s state?

Answer: start a new shell (sharing our stdin, stdout, stderr), run the
commands in it, and exit.

Better answer: Automate this process.
e A shell script as a program (user doesn’t even know it's a script).
e Now we'll want the shell to end up being a programming language

e But it will be a bad one except for simple things

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 10

/VVriting a script

e Make the first line exactly: #!/bin/bash
e Give yourself “execute” permission on the file

e Run it

Note: The shell consults the first line:

e |f a shell-program is there, launch it and run the script

e Else if it's a “real executable” run it (more later).

Example: 1listhome

-

Dan Grossman CSE303 Spring 2007, Lecture 3

11

/Accessing arguments \

The script accesses the arguments with $7 to get the #t® one (name of
program is $0).

Example: make_thumbnailil

Also very useful for homework: shift (manual Section 4.1)

Example: countdown

We would like optional arguments and/or usage messages. Need:
e way to find out the number of arguments
e a conditional
e some stuff we already have

Example: make_thumbnail2

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 12

/I\/Iore expressions \

bash expressions can be:
e math or string tests (e.g., -It)
e logic (&&, ||, !) (if you use double-brackets)
e file tests (very common; see Pocket Guide)
e math (if you use double-parens)

Gotcha: parens and brackets must have spaces before and after them!

Example: dcdls (double cd and 1s) can check that arguments are
directories.

Exercise: Do make_thumbnails3.

Exercise: script that replaces older file with newer one

\\Exercise: make up your own /

Dan Grossman CSE303 Spring 2007, Lecture 3 13

/Review

e T[he shell runs programs and builtins, interpreting special
characters for filenames, history, 1/O redirection.

e Some builtins like if support rudimentary programming.

e A script is a program to its user, but is written using shell
commands.

So the shell language is okay for interaction and “quick-and-dirty”

programs, making it a strange beast.

For both, shell variables are extremely useful.

-

Dan Grossman CSE303 Spring 2007, Lecture 3

14

/\/ariables \

i=17 # no spaces

set

echo $i

set | grep i
echo $i
unset i

echo $i

f1=$1 # very useful in script before shifting (see homework)

Enough for your homework (arithmetic, conditionals, shift, variables,
redirection, ...)

Gotcha: using undefined variables (e.g., because of typo) doesn't fail
(just the empty string).

- /

Dan Grossman CSE303 Spring 2007, Lecture 3 15

